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Abstract
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1 Introduction

Markets imbue agents with a centralized setting to reallocate commodities amongst them-

selves in an effort to arrive at a utility-improving state. Generally, the thought is that

through markets this reallocation process is efficient. How agents in these markets traverse

the landscape of even simple general equilibrium spaces such as an Edgeworth box is still

to be determined to some extent. Many questions have been, are currently being and will

continue to be formed about this process. This paper presents and investigates the following.

Must every step on a markets path to equilibrium be utility-improving? Likely not, but what

motivation guides traders to deviate and how can they do so in a productive manner?

Classical agent-based models have provided several mechanisms for how traders achieve

equilibrating play and market convergence, though with nearly all assuming some form of

utility-improvement restriction. Traders are presumed to perfectly move along the utility-

improving side of their indifference curves (or, analogously, remain on the surplus improving

side of their cost or redemption value schedules). Laboratory experiments, however, have

repeatedly shown evidence, especially in more complex settings, that traders in a continuous

double auction (CDA) routinely break this assumption. There are a few potential reasons for

this. The mechanism privy to this paper’s model is that traders occasionally intentionally

take utility losing trades in order to set themselves up for future trades on both sides of the

market.

Such a mechanism places the model in the ‘wilderness of bounded rationality.’ (Farmer,

2003) A vast expanse of deviations from perfect rationality have been explored, with many

more yet to be charted. Two gates to this wilderness are typically recognized: that which

assumes perfect rationality and that which imparts no (or very minimal) intelligence upon

the economic agents. Models and implications at both entrances are numerous, though

admittedly with a larger mass at the rational end. A mapping between gates, however, is

less often attempted. The main goal of this paper is to present a model that provides one
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such mapping. I propose a new agent-based model of CDA trader behavior in an Edgeworth

box economy. The flavor of two influential assumptions on trader activity are incorporated:

(1) beliefs on the acceptability of prices (Gjerstad and Dickhaut, 1998), and (2) reservation

prices which adjust within-period Friedman (1991). Traders place orders by applying logit

choice probabilities to each admissible1 order; the logit choice parameter allows a trader’s

choice to capture precision anywhere between the random choice of zero-intelligence traders

(Gode and Sunder (1993); Williams (2021b)) and the surplus-maximizing traders of Gjerstad

and Dickhaut.

Section 2 presents a summary of past CDA trader behavior models. A wave of influential

models at the end of the 20th century provide the design motivation for much of this paper’s

model (as well as a vast experimental and applied literature over the last twenty years).

Advancements in behavioral learning models and a second wave of agent-based models of

the double auction are also recounted. Section 3 proposes the setting of this paper. The

double auction institution and general equilibrium setting are invoked to provide a test bed

for the theorized agents.

A tractable model of trader behavior is presented in Section 4. The set of agents fol-

low an order decision process and entry/re-entry rule that (1) loosen traditional restrictions

on the placement of strictly-improving orders, (2) impart a more holistic view on market

participation, and (3) incorporate the idea of adjusting an allocation for the sake of maneu-

verability (i.e. moving to a bundle with a more accommodating marginal rate of substitution

for both directions of trade). Agents make use of time-dependent reservation utilities and

logit choice to select and/or accept orders as two-way traders conscious of their positioning

for both sides of the market. Section 5 proposes a simple design for a test of the model via

simulations. Measures of efficiency are impressively high, which, when paired with conver-

gence in allocations and prices, hints at relatively equitable reallocations near a point on the

contract curve. Three new or updated measures of efficiency are presented, as well as two
1Nomenclature taken from Friedman (1991). Here admissible will mean satisfying a utility analog of

reservation price.
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penalized variants. The combination affords the ability to capture performance in utilities,

prices and allocations and thus a fuller view on convergence. Section 6 concludes the paper.

2 Prior Theory

A few literatures are relevant for providing a background for this project, as well as framing

its contribution overall. Theoretical work surrounding the continuous double auction price

dynamics has arrived in two distinct waves over the last fifty years. First, a batch of partial

equilibrium (PE) models were proposed in the late 80’s and throughout the 90’s. Then, a

newer wave of more generally applicable models were given in the ’00’s and ’10’s. Here I’ll

present a synopsis of both waves, as well as a selection of related research in the intermediate

period.

A trio of models set the scene for the first wave. Wilson (1987) proposed a game the-

oretic model, positing a strategic multilateral setting where each trader’s actions directly

impact the pricing strategies of the other traders. Easley and Ledyard (1993) took a less

complex route to defining double auction play, entirely removing the strategic interaction.

Traders participated in the market under the assumption their own decisions have no im-

pact on the order placement/acceptance of others, all the while guiding their own orders via

an across-period deterministic reservation price. Friedman (1991) similarly took on a game

against nature stance, however with traders administering a more sophisticated within-period

reservation price bidding/selling strategy. Two more influential models followed, providing

bounded-rationality bookends for the wave. Gode and Sunder (1993) simplified trader be-

havior even further (hence its running name of “zero intelligence”) by having order price be

randomly chosen, supposedly leaving the only driving factor of price formation being the

underlying rules of the double auction itself. Much closer to the perfectly rational gate,

Gjerstad and Dickhaut (1998) models traders who develop beliefs on the acceptability of

prices, and then select the price which yields the maximum expected surplus.

The literature from this point split over the last of couple decades. A batch of parsi-
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monious, tractable, often heuristic-driven models entered the learning literature. Though

not directly designed for markets, the following models can naturally be bent to account for

the more complex setting. Roth and Erev (1995) provide a reinforcement learning model

designed for dynamic games, with an emphasis on testing performance and convergence in

the intermediate term. Agents develop choice propensities for each strategy, with successful

outcomes increasing a strategy’s propensity to be chosen in future decisions.2 Fudenberg

and Levine (1995) postulate a theory of ’cautious fictitious play’, which places beliefs over

the probability of opponent’s playing given strategies. Agents use these beliefs to make their

own strategy, each strategy being chosen with some logit choice probability.3 Camerer and

Ho (1999) house reinforcement-based learning and belief-based learning as special cases of

a more complex experience-weighted attraction learning model; some flexible convex combi-

nation of the two is shown to generally be a better fit to game data than either of the two

as stand-alone models.

A strain of models imposing higher levels of complexity in behavior or more complex

market settings, or both, have also been proposed recently. One such model that is highly

malleable in terms of its application and setting is the individual evolutionary learning model

(IEL) of Arifovic and Ledyard (2011). Economic agents maintain an evolving pool of po-

tential choices which they draw from subject to a probability distribution that is constantly

updating via experimentation and replication stages. A few years later, Anufriev et al. (2013)

applied IEL to the continuous double auction setting, in a partial equilibrium environment.4

General equilibrium adaptions of the ZI model were promoted by Gode et al. (2004) and

Crockett et al. (2008) a decade or so after the original model was published. The former

features a price-angle order choice process, while the latter proposes a learning process by

which the allowable subset of the contract curve is restricted round after round. Williams
2The model was tested across three game types, with one being a simple market.
3Feltovich (2000) tested these two models in the laboratory where subjects played a two-stage game with

asymmetric information. The reinforcement model better predicted choice probability of a subject’s next
action, while the belief-based model proved better more often for aggregate trends in play.

4The timing in the paper lends itself to both an analysis of multiple iterations of a call market as well as
a double auction in near continuous time. van de Leur and Anufriev (2018) extends the model via a more
complex timing problem.
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(2021a,b) bring two models from the first wave to a general equilibrium setting. An al-

ternative model to that of Gode, Spear and Sunder (2004), Williams (2021b) postulates a

GE-based zero intelligence (from here, ZI-G) model with a lower sense of ‘zero’ intelligence.

Williams (2021a) (henceforth ‘GD-G’) brings the belief-based process of Gjerstad and Dick-

haut (1998) to general equilibrium to better understand impacts price information may have

on market convergence.

3 Environment

I consider a market over two goods, X and Y . Traders in this market begin each trading

day, or period, with some endowment of each of these goods, with the market totals of these

endowments helping to define the Edgeworth box the traders are placed in. One of these

goods is considered a standard commodity (let this be X), and the other considered as a

numeraire (Y ), as is the case with most if not all such settings since Shapley and Shubik

(1967). Such an assumption allows the traders to trade quantities of X at prices represented

by units of Y per unit of X in traditional auction settings.

3.1 Message Space

Here, I lay out the space encompassing all exchange related information the traders are

given: the message space. This space is a crossing of several one dimensional sets (yielding

information in the form of order n-tuples) to be described below.

In typical fashion, orders are comprised of a price, a quantity and a time of placement.

Quantities are real numbers excluding 0, while prices are non-negative real numbers and

times of entry are natural numbers. In practice, all three elements of the order have finite

support. Prices are bounded above by some maximal price M , times are bounded above by

the length of a trading period T , and quantities are bounded by either the allocation bundle

of the trader or the total amount of each good in the economy.
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In addition to the standard elements, each order holds information on associated traders

(via placement or trade). The set of traders, N , is partitioned into natural buyers (B)

and natural sellers (S). Traders in B have marginal rates of substitution (MRS) above the

competitive equilibrium price (calculated at the starting endowment bundle), while those in

S have a starting MRS below the CE price.5 While these monikers hint at the preferred

order type, traders are not restricted in their trade direction, i.e. they operate as two-way

traders.

3.2 Exchange Definitions

A few subsets of the message space above define the key objects in the market. First, an

order o is an element of P ×Q× T placed by some trader in N . The sign of the quantity

element in an order determines whether it is deemed an ask (-) or bid (+). After an order is

placed to the exchange it exists in what is called the orderbook, which is a ledger organizing

orders into asks and bids and then by price and time. The best bid in the orderbook is the

highest priced; if multiple bids exist at this price then the best is the earliest placed. A

similar process holds for asks, except price priority is instead from lowest to highest.

Trade in this exchange can occur in two ways. First, if an order is placed that crosses

another order(s) already in the orderbook, i.e. a new bid (ask) that is priced higher (lower)

than the best ask (bid), then a transactions will occur at the price of the already placed

order. The amount of the good transacted is equal to the lesser of the two orders’ quantities.

The larger order will continue to live in the orderbook (with its updated desired quantity),

while the smaller order will be removed as it has been entirely filled. Additionally, if the

newer order crosses multiple (k) orders and has a large enough quantity to fill the first k-1

of them fully and the kth partially, then each of these individual transactions will occur.

Each order retains the placing trader as well as the set of transacted traders. The second

trade process is via directly accepting an existing order. In this case, the trader placing an
5Note that MRS changes throughout the life of the market, potentially enough to transition a trader from

one side of the competitive equilibrium price to the other.
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order may accept an existing order by placing an order of the same price and the quantity’s

additive inverse.

3.3 Histories

While the orderbook provides a snapshot of the present state of the exchange, a system

for (1) referencing older orders no longer in the book, and (2) providing context for the

expanse of trader’s memories within the market must be defined to track the adjustment of

the market. The history of the market is the set of all orders and trades in the lifetime

of the market. This history can be partitioned into three main subsets: trades, cancelled

orders and the orderbook. Trades are the set of orders which have been placed in the

orderbook, interacted with by at least one other trader than the trader who placed it, and

filled some quantity either via crossing or acceptance. Cancelled orders are the set of orders

which had a non-zero quantity left to be filled that were removed from the orderbook. Thus,

all orders that were placed by traders and no longer exist in the orderbook are either in the

set of trades or the set of cancelled orders.

Agents’ recollection of the history of the market may or may not be complete. In this

sense, each agent has some memory of the history. Consistent with Gjerstad an Dickhaut

(1998), this memory is defined as the set of trades and cancelled orders within the last L

trades.

3.4 Trader Preferences

Much like the ZI-G and GD-G general equilibrium models, traders are motivated via utility

functions. This is opposed to the cost and redemption-value schedules driving traders in

more classical partial equilibrium settings. Generally, the standard assumptions on the

utility function of trader i, ui, are assumed: ui is twice differentiable and quasi-concave. For

the remainder of this paper, I’ll focus on the constant elasticity of substitution functional
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form:

ui(x, y) = ci((aix)
r + (biy)

r)
1
r (1)

For simplicity, I normalize relative preference parameters a and b such that they sum to one

and are both non-negative. The curvature parameter r is also assumed to lie in (−∞, 1] to

satisfy the quasi-concavity requirement.

I add the flavor of reservation prices to trader’s preferences, though through an avenue

more appropriate for general equilibrium. Traders maintain reservations around the utility

gained at each price (or quantity change in x). As agents are two-way traders, they develop

these reservations as both buyers and sellers. For example, an agent who enters as a buyer

may set a reservation utility by considering an altered version of her utility function, one

which now requires more X to satisfy a utility-improving order. Similarly an agent electing

to sell may consider an adjusted utility function which readjusts her relative preferences to

favor Y less than her true preferences. For CES preferences, this would mean adjusting the

relative sizes of ai and/or bi.

One natural consideration would be to have a piece-wise, kinked indifference curve sat-

isfying the above adjustments. Such a model would be an attempt at a GE-version of the

reservation price model of Friedman (1991). While this is an interesting option, explored in

Appendix ??, I take the position that this may be a waste of the ‘other halves’ of these ad-

justed indifference curves. Agents, instead, use each of these preference sets for two different

order choice rules.

Figure 1 provides an example of the adjustment in curvature, and thus relative prefer-

ences over X and Y . The two rules, to be discussed at length in Section 4, dictate accepting

orders and placing orders. Depending on the side of entry, the reservation utility IC above

the true IC is used for the acceptance rule and the reservation IC below the true IC (the

portion thrown out usually) guides the order placement rule.

These reservation utilities are captured via parameter η, where η(t) is a function of
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Figure 1: Reservation Utility. The black curve shows an indifference curve (IC) of ui. The
green and red dotted curves show IC’s for ui,b and ui,s, respectively. The two blue dotted
line segments show best ask (right) and bid (left) prices in the market. The shaded region
shows the space in which this trader would automatically accept a posted ask, were he to
enter as a buyer.

within-period time t, and enters into the trader’s utility function as follows

ui,b(x, y|η) = ci((ai − η)rxr + (bi + η)ryr)
1
r (2)

ui,s(x, y|η) = ci((ai + η)rxr + (bi − η)ryr)
1
r (3)

Here ui,b is the buyer reservation utility for trader i, and ui,s is the seller reservation utility.

A few desirable statics arise when determining an appropriate functional for for η. First, as

gains from trade decline over the life of the market and a smaller range of prices become

competitive or desirable, dη/dt < 0 should be satisfied. Second, the size of the adjustment

should be related to the trader’s relative preference between the two goods. Namely, a trader

who strongly prefers one good to the other may be less inclined to consider large deviations in

their reservations away from their true preferences. Third, a trader’s reservation preferences

shouldn’t change her outlook on a product from a ‘good’ to a ‘bad’, i.e. η ≤ min{ai, bi}.

Thus, the form of η(t) I consider in this paper is
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η(t) =

(
T − t

T

)
min{a, b}
max{a, b}

min{a, b} (4)

A few special cases should be mentioned as well. First, with respect to functional form,

perfect substitutes (r = 1), perfect complements (r → −∞) and Cobb-Douglas (r → 0−,+)

are naturally folded into CES preferences. Both perfect substitutes and perfect complements

provide interesting responses/interpretations when including η as in equations 2 and 3. The

former, graphically, mimics reference prices from the partial equilibrium literature of the

90’s, as the slope of the IC gives a natural reservation price. The latter is analogous to an

adjustment in the desired complement ratio.

4 Agent-Based Model

This section lays out the details of the model, now that the environment has been established.

Much like the GD-G model from Williams (2021a), four main processes determine the flow

of the market and trader behavior in this model. These are entry, belief updating, market

interaction, and re-entry determination.

Entry refers to the actions taken and snapshot of the market received by the trader

who enters the market in time t. In all times aside from the inception of the market, entry

is actually the second step of a two-part market entry/exit flow process along with the re-

entry determination phase. The belief-updating phase takes the snapshot of the market in

the entry phase and allows the entrant to readjust his interpretation of which prices my

potentially be successful moving forward. Market interaction defines the order selection and

submission process, as well as potential clearing. The re-entry determination phase sees all

traders briefly evaluate their holdings, beliefs and the state of the market to evaluate their

desire for re-entry. Below, each of these will be fleshed out in much greater detail.
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4.1 Entry

Entry (and re-entry) into this environment’s markets can take a couple of different forms

depending on the age of the market and the potential entrant’s previous participation in the

market. The inception of the market (i.e. the first entry in the first iteration, or period, of

the market) is unique in that no prior history exists. As such, this is the only instance in

which entry is entirely random. Similarly, the first entrant of any period after the first is

uniformly drawn.

The second (and far more common) entry situation is any entry after the first in any

market period. To foreshadow the re-entry process discussed in section 4.4, the trader who

wins the re-entry draw (with re-entry probabilities being dependent on average utility gain

above a given trader’s reservation utility) enters the market next. In this case, the trader

drawn to (re)enter checks the market’s best bid and ask against their own current reservation

utilities and begins the belief updating process before making a decision on how they wish

to use their entry.

4.2 Belief Updating

First, recall the belief formation and updating process of Gjerstad and Dickhaut (1998).

Here, traders establish beliefs over the acceptability of certain prices on either side of the

market. Traders recall a portion of the history, ΩH , and tally the success and failure rate of

each price, ρ, seen for each side of the market, TA(ρ) for asks and TB(ρ) for bids.

In Gjerstad and Dickhaut’s original setting, these tallies were defined as counts with a

count of 1 given to each order that satisfied the criteria (traded or cancelled) of interest.

This was appropriate as each order in their partial equilibrium setting was required to be for

a single indivisible unit. However, uniform counts are not attuned to settings with multiple

and/or divisible units. Williams (2021a) provides a general-equilibrium-adjusted version of

Gjerstad and Dickhaut’s model, in which each order is given weight equal to the proportion
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of the original quantity successfully traded, √qk
qk,traded

qk
. A similar weighted count is defined

for the rejected (cancelled) portions of orders, RA(ρ) and RB(ρ).

Traders aggregate over the success of orders at less desirable (to the rest of the market)

prices than one they may be considering. This is assessed relative to the success of these

worse prices along with the failure of prices placed on the desired side at more desirable

prices. In the notation of Gjerstad and Dickhaut (1998), for some bid ρ,

pb(b) =

∑
ρ≤b TB(b) +

∑
ρ≤b TA(b)∑

ρ≤b TB(b) +
∑

ρ≤b TA(b) +
∑

ρ≥b RB(b)
(5)

represents the probability of acceptance. The analogous definition for sell price acceptability

is

ps(s) =

∑
ρ≥s TA(s) +

∑
ρ≥s TB(s)∑

ρ≥s TA(s) +
∑

ρ≥s TB(s) +
∑

ρ≤s RA(s)
(6)

Each trader holds such a belief for each price represented in ΩH . Note that beliefs are over

the domain [0,M ], with pb(0) = 0 and pb(M) = 1 for bids and the reverse for asks.

4.3 Market Interaction

Contrary to ZI-G and GD-G, this model considers the use of two types of order placement

strategies, accepting orders directly and placing orders in the book. While both of the prior

models can achieve both strategies via only the latter (as crossing orders essentially accept

another order directly), a couple of distinctions should be made. First, in a setting where

orders can have multiple and/or partial unit quantities, crossing orders won’t always interact

as cleanly in the orderbook as an accept. Second, it seems natural to consider the two actions

as responding to separate lines of intent for the trader, with accepts being very short-term,

heuristic driven choices and orderbook additions being more long-term plays. Establishing

such distinctions between the two also provides a nice analog to the ideas of market orders

and limit orders in the financial literature.

The market interaction, in concert with the above, is a two part process: checking for

13



and interacting with orders that may be desirable immediately, and submitting an order to

the exchange to add to the existing book. Note that the second step is only reached if the

trader does not satisfy the “interacting" portion of the first step. Below are the processes of

accepting and placing orders explained in detail.

4.3.1 Accepting Orders

Upon entry, even before the belief updating process has occurred, the trader has an idea of

their reservation utility on their selected side of entry. Consistent with previous reservation

price models, traders have an incentive and desire to accept with certainty an order on the

contra-side of the market whose price is better than their reservation. This means the trader

would be checking first if the current book leaves any room between the best order on the

entered side, BP−∆, and his current reservation utility, or:

|BP−∆ −MRSui
| − |MRSui,∆

−MRSui
| > 0 (7)

A check with evidence of a contra-side order in this region induces the entrant to accept the

order outright. If multiple orders exist in this region, the order with the highest resultant

utility is chosen. A null result from the check leads the trader to stage two of their market

interaction. Figure 1 displays such a check, where an entry on the buy side could yield an

auto-accept as the best ask price vector lies above the stricter reservation utility. If the

quantity associated with the ask yields a utility improvement, then the trader will accept

the order.

4.3.2 Placing an Order

While on side ∆, the trader has three indifference curves to consider: the curve for ui,∆, the

curve for ui and the curve for ui,−∆. Functionally, only two of these will be considered. The

more restrictive reservation utility, ui,∆, has already been shown to be used as a bound for

immediately-acceptable orders. The weaker reservation utility, ui,−∆, provides a lower bound
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for the bundles necessary to be at least as happy in future entries (especially if entering on

side −∆ in their next interaction). The curve associated with ui is left to serve as a target

for activity very late in the market’s life, with ui,∆ and ui,−∆ providing “goal posts” moving

over time as a reflection of a trader’s continuation value.

Using this lower goal post as a criterion for utility-improving orders, the trader considers

any bundle on the ∆ side that is weakly better than their current reservation utility ui,−∆.

This set of orders lies in

Pui,−∆
×Qui,−∆

≡(min{|MRSui,−∆
|,Boundary∆}, max{|MRSui,−∆

|,Boundary∆}]×(0,x̄(∆)] (8)

Pui,−∆
takes an open lower bound at the marginal rate of substitution at the trader’s

current endowment on the contra-side reservation utility ui,−∆ and a closed upper bound

at the boundary price on that side (Boundary∆; 0 if ∆ = b and M if ∆ = s). Qui,−∆

is more tedious to define, as the upper bound must take both current allocation and the

non-zero6 intersection point between the indifference curve and line associated with the best

price on that side, BP∆, into account. The upper bound on Qui,−∆
is dependent on both the

intersection between ui,−∆ and the price vector extending from the trader’s current allocation

(call this x̂) and the trader’s current holdings of x. When ∆ = b, x̄ is generally equal to

x̂; however, if x̂ is non-existent or sufficiently large, then x̄ is bounded above by the total

x remaining in the market. For ∆ = s, x̄ is the minimum of the total y remaining in the

market divided by the price of the order and x̂.

For each potential bundle, oz ∈ Oz := Pui,−∆
×Qui,−∆

, the trader considers their belief

on the acceptability of the given price. Each bundle thus has an expected level of utility

improvement. The trader considers the possible bundles with logit choice probability:

Pr(oz|xk, yk,ΩM) =
exp[λp∆(oz)ui,−∆(oz))]∑

o′zϵOz
exp[λp∆(o

′
z)(ui,−∆(o

′
z)]

(9)

6The “zero” intersection here would be at the trader’s current allocation.
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The parameter λ implies some preciseness over the trader’s ability to choose the expected

utility-gain maximizing order. Reservation adjustment aside, λ = 0 would yield a uniform

distribution over the orders, much like ZI-G. Similarly, λ → ∞ would imply perfect choice

as in GD-G.

4.4 Re-entry Determination

Now that the current entrant has entered, updated and (attempted to) place their order,

and the exchange has updated the book and/or processed a transaction, the rest of the

market (and the entrant herself) can individually reflect and gather their potential gains

on either side of the market. For side ∆, each trader considers ui,∆ when determining

the set of admissible orders (those which are immediately acceptable) Pui,∆
× Qui,∆

. Each

admissible order is given an expected utility gain using the trader’s developed beliefs for price

acceptability. The trader averages over the expected gains of all admissible orders, giving

them an idea of the expected gain for entering on that side. Each trader-side is treated as

a separate draw for the next entry into the market, with each draw’s probability being the

draw’s expected gain divided by the sum of all trader-side expected gains.

5 Simulations

5.1 Implementation

The performance of the model presented here is demonstrated via a set of simulated markets.

A group of eight computerized traders are placed in a simulated CDA, playing in multiple

periods of a single market. This multi-period-life market is simulated many times, completely

refreshed at the inception of each simulation.

The main assumptions of the model, institution and equilibrium are applied to the

traders; a series of 40 markets are simulated under these conditions (and with the parameters
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described below). Each market lives twelve periods of identical length. A market period is

comprised of 200 market entries, with the entrant being determined via the draw described

in Section 4.4.7

Each computerized trader has CES preferences over two goods, with parameter sets:

c a b r (xEndow, yEndow)
Buyers 0.113 0.825 0.175 0.5 (3,23)
Sellers 0.099 0.6875 0.3125 0.5 (11,3)

Table 1: Simulated Agent Parameters.

Given these parameters, the natural buyer’s and seller’s η adjustments begin at 0.035 and

0.142, decaying to 0 by the end of each period. The competitive equilibrium price associated

with the traders’ true preferences, ui, at the endowment point is 2.44. If traders trade solely

based on their stricter preferences, ui,∆, the CE price calculated at time 0 and for the starting

endowments is 2.82.8 Following only lower reservation utilities, ui,−∆, the starting CE price

would be 2.24.

All traders maintain a memory of L = 5, implying they can perfectly recall all transac-

tions and order cancellations in the market within the last five transactions.9 This memory

may span across market periods within the same run, however may not carry over between

runs.10 Additionally, when conducting the logit choice procedure over the set of feasible

orders, each trader will have a logit choice parameter, λ, of 5. This places traders’ choice

precision between uniformly random and perfect, leaning more on the side of random. See

Appendices A.1 for robustness runs testing history choices.
7As in the model, no market level spread reduction rule is enforced. However, traders have ‘internal’

spread rules, only replacing their own order if its better than one currently in the market. As this still
allows for order placement at prices worse than the best bid and ask, I don’t feel such a restriction is overly
influential in market success. These internal rules are the only impediment on orders not being placed in the
book. In the batch of simulations discussed here, 146 out of 200 orders were placed per period on average.
See Appendix A.4 for simulations without such a reduction rule.

8This falls to 2.59 at the halfway point of a period.
9This is the memory length used in Gjerstad and Dickhaut (1998). I test two other memory lengths, 0

and 10, book-ending this choice for robustness. See Appendix A.2.
10This assumption is tested in a batch of simulations with trader memories that refresh at the beginning

of every period.
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5.2 Measuring Efficiency

Traditionally, the measure coined as ‘allocative efficiency’ has been used as the main efficiency

measure in this type of simple market. The measure comes from the partial equilibrium

literature, defined as the sum of profits made by each of the traders on each of their units

over the expected gain across all units in equilibrium. More formally, this is written as

∑B
b=1

∑Pb

i=1(pi,b − vi,b) +
∑S

s=1

∑Ps

j=1(cj,s − pj,s)∑B
b=1

∑Pb

i=1(pCE − vi,b) +
∑S

s=1

∑Ps

j=1(cj,s − pCE)
(10)

where B and S are the cardinalities of the buyer and seller sets, and Pb and Ps are the

number of buyer and seller units at the inception of a market. The sets {vi} and {cj} are

the buyers’ and sellers’ redemption values and unit costs, while {pi,b} and {pj,s} are the buy

and sell trade prices and pCE is the competitive equilibrium price.

One natural analogue to this measure in GE is to replace the main PE outcome, cash

profit, with the main GE outcome, utility gain. As such, I term the sum of realized utility

gains over expected utility gains, seen in equation (11), as allocative efficiency in a two-good

Edgeworth box economy.

EAlloc ≡
∑N

i=1(ui(xi,T , yi,T )− ui(xi,0, yi,0))∑N
i=1(ui(xCE

i , yCE
i )− ui(xi,0, yi,0))

(11)

While this provides a nice outlook on the gains from trade reaped by the market in utility

terms, the measure is undiscriminating in terms of relative gains across individual traders.

For example, for two market realizations both not reaching competitive equilibrium, it is

entirely possible the two vectors of utility gains are noticeably different. In fact, the two

vectors need not even have equivalent lengths. I provide a penalized version of allocative

efficiency as well, where the value in (11) is multiplied by a scaling penalty defined in (12).

For interpretation of the following notation, v⃗ω→T is the vector from the tuple of utilities

at a period’s starting endowment to the tuple of final utilities at time T in the period and
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v⃗ω→CE is the vector from the tuple of utilities at a period’s starting endowment to the tuple

of expected utilities in competitive equilibrium.

∥projv⃗ω→CE
v⃗ω→T∥

∥v⃗ω→T∥
where projv⃗ω→CE

v⃗ω→T ≡ v⃗ω→T · v⃗ω→CE

∥v⃗ω→CE∥2
v⃗ω→CE (12)

Thus, if the tuple of final utilities deviates greatly from the path determined by v⃗ω→CE, the

estimate is scaled down proportional to its deviation.

I also provide a second interpretation of partial equilibrium’s allocative efficiency in

general equilibrium, named ‘profit efficiency’. For each trade made by a pair of traders, each

trader i has a price, call it pInd(i), at which she could have moved the same number of units

of X on the side she traded while remaining on the same indifference curve. The difference

in this price and the actual trade price, multiplied by the traded quantity,11 is the GE analog

of a cash gain, i.e. the gain (or loss) in the numeraire. Such a gain summed across all trades

across all traders divided by the gain when replacing each trade price with the CE price

defines this profit efficiency, as in (13). For notation, let Aτ be the set of actions a resulting

in a trade, i.e. the a represented by the set of orders o comprising Ωτ .

EProfit ≡
∑

a∈Aτ
[κaqa(p

Ind(ba)− pa) + κaqa(pa − pInd(sa))]∑
a∈Aτ

[κaqa(pInd(ba)− pCE) + κaqa(pCE − pInd(sa))]
(13)

Though these two efficiency measures provide a meaningful account of the market’s

ability to capture gains from trade in utility and price terms, neither seems to capture the

market’s path and proximity to the equilibrium allocation. The third measure of efficiency

I examine, ‘distance efficiency’, aims to capture the market’s performance in allocations.

Equation (14) defines the statistic as a deviation from one hundred percent. The deviation

is measured as the distance to the equilibrium allocation bundle,{xCE, yCE}, at the end of a

trading period relative the total distance traveled in equilibrium.
11For a trade occurring in action a, this is κaqa, or the proportion of the order filled multiplied by the

quantity desired.
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EDist ≡ 1− dCE({xT , yT})
dCE({xω, yω})

(14)

with distance measure

dCE({x, y}) ≡
1

N

N∑
i=1

√
(xi − xCE)2 + (

1

pCE

(yi − yCE))2 (15)

The endowment bundle and final bundle are denoted as {xω, yω} and {xT , yT}.

Much like with the allocative efficiency measure, this measure may not fully account

for large variation in allocative gains across traders. Thus, I provide a penalized version of

distance efficiency as well. In line with the notation of the penalized allocative efficiency, I

denote the vector from the endowment bundle to the equilibrium bundle as α⃗ω→CE and the

vector from the endowment to the final allocation as α⃗ω→T . As the set of bundles that satisfy

the same level of distance efficiency all lie on the surface of the same ball around {xCE, yCE},

the penalty should increase in intensity as the final bundle deviates from α⃗ω→CE and as the

market begins over-trading. The penalty is thus defined as in equation (16), and is applied

as a scaling term multiplying the distance efficiency measure in practice.12

∥α⃗ω→CE∥ − ∥α⃗T→CE∥
∥projα⃗ω→CE

α⃗ω→T∥
(16)

Notice the numerator refers to the length of the vector from the endowment bundle to

the point lying on α⃗ω→CE which is equidistant from {xCE, yCE} as {xT , yT}.

5.3 Performance

Table 2 records the main performance measures for the simulated markets. A quick glance

shows evidence of surprisingly successful markets. Estimates show promising levels of con-

vergence in both allocation and price space, with markets tracking remarkably well around
12∥·∥ here is the standard Euclidean norm.

20



Mean St. Dev. Range
I. Prices
Price 2.60 0.22 (2.07, 3.51)
Per-Unit Avg. 2.43 0.26 (1.83, 3.55)
|Price− CE| 0.55 0.17 (0.24, 1.34)
RMSE 0.95 0.34 (0.31, 2.10)
Final 5 Prices 2.47 0.14 (2.13, 3.30)

II. Allocations
Final Distance 0.86 0.58 (0.03, 3.79)
Seller MRS 2.41 0.17 (1.56, 2.79)
BuyerMRS 2.54 0.20 (2.18, 3.80)

III. Efficiencies
Allocative 0.99 0.01 (0.91, 1.00)

- Penalized 0.77 0.10 (0.43, 0.97)
Distance 0.82 0.05 (0.65, 0.95)

- Penalized 0.68 0.08 (0.41, 0.88)
Profit 0.91 0.08 (0.67, 1.13)

Observations 480 480 480

Table 2: Simulation Outcomes. Observations at the round-average level. Panel I shows
price related estimates. RMSE is the root-mean-squared error. Panel II reports outcomes
in allocation space. MRS here is the marginal rate of substitution at the final allocation of
aggregated representative agents. Panel III lists estimates for three measures of efficiency.

the equilibrium path.

All estimates are means of round-average (in the case of all price measures) or round-

end (in the case of allocation and efficiency measures) level observations. Average price lies

just 0.16 above the CE prediction from market inception, which, when accompanied with

a relatively low average deviation, implies transaction prices lie in a tight band around the

CE price. Figure 2 confirms not only the round-averages, but the individual transaction

prices across the markets are closely bound. The per-unit average price (total units of y

traded divided by total units of x traded across the period) is less sensitive to high outlier

prices as they are accompanied with small trade quantities; de-weighting as such yields an

estimate just 0.01 unit away from CE. Convergence within period, however, requires tighter

bounds on the time in focus. The final batch of transactions in a period provide an idea of
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the traders’ desire to trade and urgency to reap more gains from trade. I find an estimate

even tighter to the CE prediction, suggesting prices not only lie close to the equilibrium, but

tighten and converge in some smaller bound as the period ends.

Figure 2: Kernel density for prices. Red line shows round-averages, while red-dotted shows
individual transaction prices. The black vertical line is the mean of the round-averages, and
the blue dotted line is the CE price of 2.44.

Even so, prices can only reveal a portion of the full success of the market. Panel II

gives two distinct pictures of how these simulated traders reallocate the two goods among

themselves. The first is how far away the market is as a whole from the equilibrium set

of allocations. To examine this, I collapse13 the two types of traders into representative

agents. These agents can aptly be represented in the Edgeworth box. On average, the final

distance14 the pair lies away from equilibrium allocation bundle pair is within a unit radius of

the final. Allocations approach the contract curve, on average lying in nearly Pareto optimal
13For example, the four natural buyers can be aggregated into a single agent by averaging over each

transaction made by one (or two) of the traders. If a buyer transacts with a natural seller, the adjustment
in the representative buyer’s allocation will be a quarter of that realized by the individual trader. If two
natural buyers transact, the representative sees no adjustment in his allocation.

14I.e. the Euclidian distance that the representative buyer (and equivalently, seller) is away from the
equilibrium allocation in the Edgeworth box. The y contribution to the distance is de-weighted by the
equilibrium price. The distance function is thus dist(·) =

√
(xi − xCE)2 + ( 1

pCE
(yi − yCE))2.
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final resting places. As displayed in Figure 3, the geometric mean of the final allocations is

very close to the equilibrium bundle, and even closer to the contract curve in general. In

fact, the vast majority of the final allocations lie on the contract curve or quite close.

Figure 3: Final Allocations. Each grey dot represents the final allocation of the representative
agents in the Edgeworth box. The red dot shows the equilibrium bundles, while the green dot
represents the geometric mean of the scattered grey dots. The CE-price de-weighted distance
between the red and green dots is 0.478 units. The dotted lines show the indifference curves
of the representative agents evaluated at the endowment allocation. The dashed line shows
the set of Pareto optimal allocations.

The marginal rate of substitution of market participants gives a proxy for convergence

in allocative efficiency, as a trader’s MRS should equal the CE price in equilibrium. Natural

buyers are characterized by their initial MRS being above the equilibrium prediction; natural

sellers lie on the other side of the price. As such, the traders, and their representative agents,

should reallocate resources throughout the market period to collapse their MRS to the CE-

price. The average final allocations of the representatives approach encouragingly close to

2.44, with sellers 0.03 below and buyers 0.08 above. Despite large ranges of round-end

estimates for this spread, tight standard deviations suggest poorer MRS spreads are rather

uncommon. Figure 4 reinforces such a claim, as around 90% of the periods yield an MRS

spread within 0.5 units.

Three measures of efficiency are estimated: allocative, distance and profit. Each is
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Figure 4: The left figure shows the densities for round-end representative agent Buyer (red)
and Seller (green) MRS. The black line represents the CE price. The right figure shows the
CDF for the round-end gap between the Buyer and Seller MRS.

meant to capture the performance of the market in a different convergence indicator: utility,

allocations, and prices. The simulations report promising results in each.

First, the base measure of allocative efficiency reports an average of 0.99 with a minimum

estimate of 0.91. The market clearly is capturing essentially all of the gains from trade

achievable in utility-terms. However, is this being driven by one or two traders dominating

the market or are gains seen by all traders? The penalized average of 0.77 reflects some mild

deviation from the path given by v⃗ω→CE, with the minimum estimate drops from 0.91 to

0.43. A Spearman rank correlation of 0.35 between the two measures suggests high efficiency

periods are not entirely dependent on markets with over-equitable or inequitable utility gain

distributions.

While gains from trade in utility terms are mostly being realized, is the market ar-

riving at the correct final allocation? Figure 3 provides a hint in two dimensions via the

representative agents. The base measure for distance efficiency corroborates these findings

in space represented all traders individually, achieving an average value of 0.82. While an

18% average deviation may seem large, the localization along the contract curve in Figure 3
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suggests these deviations are likely lateral. The penalized estimate of 0.66 supports this, as

the penalty is 0.68/0.82, or 0.83. This implies the average distance traveled is 20% greater

than the numerator (∥α⃗ω→CE∥−∥α⃗T→CE∥) which is equivalent to the base measure estimate

of 0.82. Therefore, the average distance traveled essentially matches that of the equilibrium

path, matching the idea that the majority of the markets are finishing near a point on the

contract curve.

Figure 5: Cumulative Density Functions for Efficiency.

The final efficiency measure, profit efficiency, examines the market’s ability to maximize

gains from trade via price selection. As over-trading is possible in this model, the value

can exceed 1. The average profit efficiency for the simulations is 0.91. Despite the ability

to intentionally place utility-losing offers, the markets capture nearly all of the gains in the

numeraire compared to equilibrium predictions. Sellers appear to be the group of traders

comprimising on price more as they are capturing only 60% of their expected profit in

Y , while buyers are overperforming with 124%. While pronounced, this difference is not

particularly surprising as sellers’ η is much larger throughout the period, leading them to

post much more aggressive orders regardless of the side they enter. Additionally, the lower

η of the buyers leads to a higher likelihood of auto-accepting those aggressive orders.
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5.4 Adjustments in λ

λ = 0 λ = 20
Mean St. Dev. Range Mean St. Dev. Range

I. Prices
Price 2.78 0.42 (1.65, 4.65) 2.54 0.21 (0.96, 3.33)
Per-Unit Avg. 2.52 0.34 (1.55, 3.53) 2.46 0.24 (1.03, 3.18)
|Price− CE| 0.94 0.35 (0.34, 2.86) 0.37 0.17 (0.18, 1.48)
RMSE 1.40 0.60 (0.42, 3.67) 0.61 0.26 (0.25, 1.92)
Final 5 Prices 2.56 0.31 (1.87, 3.66) 2.44 0.17 (0.96, 3.07)

II. Allocations
Final Distance 0.81 0.50 (0.01, 2.72) 0.80 0.79 (0.03, 6.63)
Seller MRS 2.36 0.19 (1.75, 3.02) 2.35 0.23 (0.90, 2.61)
Buyer MRS 2.55 0.21 (2.07, 3.34) 2.59 0.31 (2.29, 5.31)

III. Efficiencies
Allocative 0.94 0.06 (0.44, 1.00) 0.99 0.07 (0.16, 1.00)

-Penalized 0.76 0.12 (0.15, 0.97) 0.87 0.11 (0.06, 0.98)
Distance 0.75 0.08 (0.39, 0.90) 0.86 0.08 (0.09, 0.95)

-Penalized 0.56 0.12 (0.11, 0.80) 0.76 0.10 (0.08, 0.91)
Profit 0.86 0.09 (0.15, 1.07) 0.92 0.08 (0.21, 1.08)

Observations 240 240 240 239 239 239

Table 3: Simulation outcomes for markets with logit parameter, λ, values of 0 and 20. One
round in the λ = 20 simulations had zero trades, hence the lower observation count.

The left panel of Table 3 shows estimates for markets with a logit parameter of 0,

meaning traders are placing uniform probability over their order choices. Unsurprisingly,

nearly all estimates are worse than the λ = 5 markets reported in Section 5.3. What is

surprising is how small some of the differences are. Buyer and Seller MRS still sit about 0.1

unit on either side of the CE price, though the supports suggest overtrading occurs more

often when taking away the use for price beliefs. The deviations in efficiency estimates match

are similar in magnitude to those of the L=0 markets in Appendix A.2; this suggests having

no order history is as harmful to market performance as random selection. Price estimates

show the largest deviation, with average price over 0.3 away from CE and some periods

having an average nearly double the CE price.
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The right panel shows estimates for markets with much more intelligent traders. With

a logit parameter of λ = 20, small adjustments in expected utility across order options are

more discernible to the trader, allowing for more precise order choice. While estimates in

these markets do outperform the λ = 0 estimates, they do not outperform the main λ = 5

results. In some cases, estimates are marginally worse, in fact. Penalized distance efficiency is

noticeably better (base Distance efficiency only marginally) in these more intelligent markets,

while all Panel II estimates are quite close to the Table 1 estimates. Markets are thus arriving

at final allocations a similar distance away from the CE bundle as the λ = 5 markets, however

with these points lying closer to v⃗ω→CE.

6 Extension: Type

A natural extension of this framework is to consider traders of different types, or with alter-

native motives for holding reference utilities. I introduce three interesting types, in addition

to the trader introduced in Section 3, that make use of these side-specific reservation utili-

ties in ways that intuitively fit different behavior profiles. First, consider traders’ patience,

or impatience, over participating in trades and reallocating. Two profiles or types can be

quickly defined by considered the inner and outer “kinked” preferences created by a trader

only considering one reservation utility for each side of the market for both order types. For

instance, consider a trader who is patient, only willing to reallocate at very advantageous

prices to them both immediately or in the future. Then, that trader may consider only ui,∆

for both accepts and limit orders; this is equivalent to considering a piecewise kinked utility

function where ui,s is considered for sells and ui,b for buys.15 This is also the most natu-

ral adaption of the reservation price behavior considered in partial equilibrium (Friedman

(1991)).

Alternatively, a trader may be exceedingly impatient. If the trader is operating under
15Crockett and Oprea (2012) also consider a kinked utility function in a general equilibrium setting, though

under different behavioral considerations.
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the intent to accept orders, or reallocate, as often as possible (and maintain a sense of

bettering their reservation), they may consider only their more permissive reservation utilities

(i.e. ui,−∆). Using same-side reservation utility yields weakly more opportunities accept an

order upon entry, as the subset of the Edgeworth box (given entry side) that is same-side

reservation-utility-improving contains the subset that is improving when considering the

contra-side reservation as a proper subset for any t < T . Additionally, since the beliefs over

price acceptability are weakly monotonic in the direction of orderbook ordering, the limit

orders they place are more likely to be accepted in less time. I’ll refer to these to types as

Patient (type-P) and Impatient (type-I) traders, respectively.

The last alternative type I’ll define here is essentially the reverse of the trader defined

in Section 3. This type of trader similarly wants to consider different reservation utilities

based on side and order type in an effort to reposition. However, they are naive in their

implementation, in the end switching which reservations are used for which order type.

Namely, the trader considers their same-side reservation for limit orders, while using their

contra-side reservation for market orders. I’ll refer to these types as Naively Repositioning

(type-NR). Similarly, I’ll refer to the traders defined in Section 3 as Strategically Repositioning

(type-SR).

In Table 4, I report performance estimates for simulated markets of each of the above

variants. Under the same moderate λ tested in type-SR markets, I find each alternative

arrives at roughly similar base allocative efficiency levels, though via noticeably different

processes. In price, averages arrive from the anticipated directions. Impatient traders trade

at below base-CE prices, driven by larger concessions in price being made on the sell side than

the buy side. Similarly, Patient traders approach CE price from above, with the average final

five prices lying closer to CE than the per-unit average price. These are consistent with the

starting CE prices when taking the reservation utilities being used as given, with a CE price

of 2.82 for a market of all type-P traders and 2.24 for an all-type-I market. As shown later in

Figure 6, these ranges of CE prices over t, correspond to and support experimental findings

of along considerable subsections of the contract curve (e.g. (Crockett, 2008); (Gjerstad,
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Naive Repositioning Impatient Patient
Mean St. Dev. Range Mean St. Dev. Range Mean St. Dev. Range

I. Prices
Price 2.46 0.29 (1.83, 3.84) 2.30 0.14 (1.92, 2.74) 2.70 0.38 (1.05, 3.71)
Per-Unit Avg. 2.37 0.27 (1.80, 3.47) 2.25 0.15 (1.83, 2.79) 2.68 0.38 (1.06, 3.72)
|Price− CE| 0.74 0.15 (0.38, 1.40) 0.52 0.12 (0.20, 0.90) 0.73 0.26 (0.26, 1.62)
RMSE 0.91 0.18 (0.50, 1.92) 0.68 0.16 (0.29 1.44) 1.18 0.51 (0.38, 2.82)
Final 5 Prices 2.36 0.35 (1.48, 3.84) 2.24 0.17 (1.68, 2.64) 2.47 0.25 (1.05, 3.37)

II. Allocations
Final Distance 0.92 0.65 (0.06, 4.86) 0.66 0.40 (0.03 2.33) 0.74 0.80 (0.03, 7.30)
Seller MRS 2.34 0.24 (1.34, 2.91) 2.46 0.16 (1.93, 3.17) 2.29 0.20 (0.78, 2.53)
Buyer MRS 2.59 0.30 (2.02, 4.32) 2.45 0.15 (2.05, 3.10) 2.61 0.36 (2.32, 5.95)

III. Efficiencies
Allocative 0.93 0.07 (0.53, 0.99) 0.97 0.06 (0.60, 1.00) 0.97 0.10 (0.02, 1.00)

-Penalized 0.41 0.11 (0.04, 0.74) 0.39 0.11 (-0.06, 0.72) 0.88 0.11 (0.01, 0.97)
Distance 0.77 0.10 (0.28, 0.96) 0.79 0.11 (0.34, 0.95) 0.84 0.10 (0.01, 0.93)

-Penalized 0.33 0.11 (0.02, 0.71) 0.32 0.11 (-0.04, 0.63) 0.73 0.11 (0.00, 0.88)
Profit 0.81 0.09 (0.26, 0.97) 0.85 0.11 (0.25 1.02) 0.93 0.10 (0.02, 1.10)

Observations 240 240 240 240 240 240 238 238 238

Table 4: Simulation outcomes for alternative trader types, Naive Repositioning (left), Im-
patient (middle) and Patient (right).

2013); Friedman et al. (2025)), and thus variation in trade price across market period and

session. Much like with type-SR markets, type-NR markets report price averages centered

near the base CE price.

While the allocative efficiencies at base are quite high (and similar to type-SR levels),

penalizing the measure reveals significant dispersion in utility gain at the individual level.

Type-NR and Type-I markets plummet to less than half of their base estimates, with average

penalized allocative efficiencies of 0.41 and 0.39 respectively. Penalized estimates for type-P

markets come in at over twice those of the other alternate type markets, falling by only

0.1 roughly. A similar story appears in distance efficiency measures, with base estimates all

roughly near 0.8, yet penalized values showing a sizable gap growing between type-NR/type-I

performance and type-P. Estimate comparison between Patient trader markets and type-SR

markets from Section 5.3 reveals type-SR markets are able to capture utility losing behavior,

while maintaining similar efficiency values (penalized or not) and even yielding prices nearer

to the base CE price.

As hinted by the penalized efficiency estimates, final allocations at the individual and
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Figure 6: Final allocations for individual traders (dots) and aggregate agents (level sets).
Green dots denote seller final allocations while red dots denote buyers. The large blue dot
reports the geometric mean of the aggregate agent final allocations.

aggregate levels, shown in Figure 6, vary greatly across alternative type. Perhaps unsur-

prisingly, the individual and aggregate final allocations are worst for the type-NR markets.

Impatient trader allocations are able to gather closer to the contract curve, though spread

wider along said curve. Both market types yield several utility-reducing final allocations at

the individual level. Patient trader markets, in the aggregate cluster close to the base CE

allocation, though with individuals falling short of the curve. This is an artifact of lower

trader count relative to the other two alternatives; given all orders are placed relative to the

less permissable reservation utility, prices are less desirable for larger portions of the market’s

duration.

7 Concluding Remarks

This paper models market dynamics in an Edgeworth box where traders have ‘imperfect’

choice procedures when placing orders in a continuous double auction. Traders have the

capacity to remember a portion of the history of the market, developing beliefs over the

acceptability of order prices. Beliefs account for the relative success of each past price based

on order size and fill. Agents recognize that they may participate on both sides of the

market, and develop reservations depending on which side they enter. As traders maintain

some utility preferences over their holdings, these reservations are held in terms of utility (as
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opposed to reservations on price as in Friedman (1991)). A curvature parameter η (which

is a function of the time remaining in the market) determines what orders are immediately

acceptable on the entered side and what orders satisfy the trader’s reservation were they to

enter on the contra-side in their next entry. Such a process allows traders to make order

selections that appear to be utility-reducing relative to their true preferences, though allow

the trader to position themselves as to better perform as a two-way trader.

A set of simulations test the performance of markets with computerized traders imbued

with the behavior described in the model. Prices near the equilibrium prediction consis-

tently. Round-averages remain slightly below equilibrium, creating tight bounds but not

quite converging. Allocations, both in 16-space and 2-space, regularly lie in impressively

close to Pareto optimal allocations along the contract curve at round’s end, often very close

to the equilibrium allocation bundle. Given rounds are not run intentionally until alloca-

tions are Pareto optimal, achieving nearly this so consistently is promising. Seller and buyer

marginal rates of substitution provide supporting evidence for convergence in allocations as

well. Efficiencies, both allocative and distance, are repeatedly high, suggesting gains from

trade are often equitably spread and mostly drawn from the market.

The major implication of the findings of this project is the feasibility of boundedly ra-

tional order placement decisions in markets that show convergent tendencies. Specifically,

strategic repositioning in the orderbook, and in anticipated holdings, is a legitimate consid-

eration traders may be making in double auctions. This paper confirms such a consideration

is not as harmful as some preferring perfectly rationality may suspect; in fact, estimates here

perform near or level with some more complex models. Furthermore, the model provides

a mapping from the zero intelligence gate (beginning with ZI) through the wilderness to a

model fit much closer to the rational gate (this being Gjerstad and Dickhaut’s belief-driven

model).

A few natural adjustments to this model exist. First, individualized η functions, depen-

dent on arguments such as current holdings, within-round and market-life earnings, and over-

all time in the market (aggregated across periods), is an interesting adaptation. Estimation
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of functional form for variations on η via laboratory experimentation could be illuminating

for the external validity of this model’s mechanism. Given the results of Williams (2021a),

an inclusion of prices in the orderbook in the belief updating process would likely improve

fit.
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Appendix A Robustness Checks

A.1 History Reset

History Reset
Mean St. Dev. Range

I. Prices
Price 2.48 0.16 (2.05, 3.04)
Per-Unit Avg. 2.37 0.16 (1.97, 2.78)
|Price− CE| 0.50 0.15 (0.23, 1.12)
RMSE 0.76 0.32 (0.31, 1.93)
Final 5 Prices 2.46 0.16 (2.07, 3.64)

II. Allocations
Final Distance 0.63 0.33 (0.07, 1.80)
Seller MRS 2.44 0.13 (1.98, 3.00)
BuyerMRS 2.47 0.13 (2.13, 3.02)

III. Efficiencies
Allocative 0.98 0.03 (0.74, 1.00)

- Penalized 0.82 0.09 (0.37, 0.97)
Distance 0.81 0.04 (0.61, 0.93)

- Penalized 0.67 0.08 (0.27, 0.84)
Profit 0.90 0.07 (0.54, 1.09)

Observations 240 240 240

Table A.1: Simulation outcomes for markets with the trader history reset at the beginning
of every period.

Table A.1 shows simulation results for markets with trader’s history entirely reset at

the start of each period. As seen in the left panel, allowing memories to straddle periods

is not driving the impressive results in the paper. In fact, resetting the history (and thus

memories) each period yields slight improvements in most outcomes relative to the markets

examined in the main text. Means for round-average prices and final prices fall just a few

tenths above of the main simulations, though with tighter ranges. Measures of final distance
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and penalized allocative efficiency are just slightly improved in the markets with resetting

memories; buyer and seller MRS actually shows a much tighter spread. Distance and profit

efficiencies are essentially unchanged.

A.2 Other Memory Lengths

L=0 L=10
Mean St. Dev. Range Mean St. Dev. Range

I. Prices
Prices 2.39 0.15 (2.01, 2.86) 2.57 0.17 (2.16, 3.12)
Per-Unit Avg. 2.31 0.16 (1.89, 2.76) 2.40 0.26 (1.76, 3.18)
|Price− CE| 0.45 0.12 (0.22, 0.96) 0.53 0.14 (0.24, 1.14)
RMSE 0.64 0.24 (0.27, 1.73) 0.93 0.30 (0.35, 1.94)
Final 5 Prices 2.45 0.15 (2.11, 3.11) 2.45 0.17 (1.93, 3.68)

II. Allocations
Final Distance 0.66 0.35 (0.03, 2.10) 0.80 0.51 (0.00, 2.39)
Seller MRS 2.44 0.14 (2.04, 3.12) 2.43 0.14 (1.83, 2.72)
Buyer MRS 2.48 0.13 (2.09, 2.93) 2.50 0.16 (2.19, 3.19)

III. Efficiencies
Allocative 0.97 0.03 (0.78, 1.00) 0.99 0.01 (0.96, 1.00)

-Penalized 0.82 0.09 (0.43, 0.97) 0.77 0.10 (0.51, 0.97)
Distance 0.81 0.05 (0.64, 0.92) 0.82 0.05 (0.69, 0.93)

-Penalized 0.67 0.09 (0.36, 0.85) 0.68 0.08 (0.43, 0.87)
Profit 0.90 0.07 (0.57, 1.06) 0.92 0.08 (0.63, 1.14)

Observations 240 240 240 240 240 240

Table A.2: Simulation outcomes for markets with memory lengths of 0 and 10 [20 runs each].

Table A.2 reports simulation results for markets with traders holding memories of L=0

and L=10. Given the tightness of the reservation utilities driven by the η in the main

paper, results appear relatively robust for lower values of L (0, 5 or 10 here). L=10 reports

mildly better estimates in prices (aside from RMSE), while L=0 narrowly nudges ahead in

allocation outcomes. Efficiencies display a mild separation in average estimates in favor of

L=10 markets and supports are tighter on nearly all measures. Relative to the L=5 estimates

reported in Section 5.3, L=10 performs nearly identically, though with a negligible lead in
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MRS estimates and slightly tighter supports across most estimates. L=0 seems to mildly

outperform the L=5 allocation estimates, while systematically lower in prices.
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A.3 No Accept Rule

λ = 0 λ = 5
Mean St. Dev. Range Mean St. Dev. Range

I. Prices
Price 2.42 0.43 (1.44, 3.62) 2.43 0.20 (1.83, 3.09)
Per-Unit Avg. 2.32 0.42 (1.39, 3.47) 2.35 0.27 (1.65, 3.07)
|Price− CE| 0.70 0.22 (0.22, 1.37) 0.45 0.17 (0.10, 1.23)
RMSE 0.87 0.27 (0.26, 1.65) 0.67 0.23 (0.12, 1.60)
Final 5 Prices 2.26 0.36 (1.45, 3.70) 2.43 0.12 (2.06, 2.87)

II. Allocations
Final Distance 1.22 0.73 (0.05, 3.71) 0.81 0.52 (0.05, 3.47)
Seller MRS 2.25 0.28 (1.56, 2.95) 2.39 0.17 (1.63, 2.70)
Buyer MRS 2.70 0.33 (1.98, 3.76) 2.54 0.19 (2.27, 3.66)

III. Efficiencies
Allocative 0.91 0.07 (0.59, 1.00) 0.99 0.01 (0.96, 1.00)

-Penalized 0.74 0.12 (0.33, 0.96) 0.82 0.09 (0.51, 0.99)
Distance 0.71 0.09 (0.36, 0.88) 0.85 0.05 (0.68, 0.94)

-Penalized 0.51 0.13 (0.14, 0.78) 0.72 0.08 (0.38, 0.88)
Profit 0.85 0.09 (0.51, 1.07) 0.95 0.08 (0.76, 1.15)

Observations 240 240 240 240 240 240

Table A.3: Simulation outcomes for markets with the accept rule removed from trader’s
decision process. Estimates are shown for markets with logit parameter values of 0 and 5.

Table A.3 reports simulation results for markets with traders who strictly place limit

orders. This is more in-line with the majority of the trader behavior and market theoretical

literature as limit orders are generally the only means of market participation in these simpler

models. I test this simplification of the traders’ order placement process in markets with

logit parameters of 0 and 5.

First, in both the right and left panel, price-related estimates are systematically lower

than the markets with the an accept rule. This is supported by (1) the lower expected CE

price of 2.24 if traders only trade on their natural side while being guided by their ui,−∆, and

(2) the lack of an accept rule means more aggressive prices (those posted closer to the lower

reservation IC) are not immediately taken. A similar explanation reconciles the improvement
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in profit efficiency in the λ = 5 panel.

The λ = 0 results are considerably lower than those of the λ = 5 markets. The largest

difference appears in the final cluster of prices, with λ = 0 markets clearly tapering towards

the ui,−∆ CE price prediction, while λ = 5 markets make an effort to stay around the true CE

prediction. Efficiency estimates are considerably lower regardless of measure for the λ = 0

sessions compared to both the right panel and the main results.

A.4 No Internal Spread Reduction Rule

No Internal SR
Mean St. Dev. Range

I. Prices
Price 2.56 0.28 (2.01, 4.07)
Per-Unit Avg. 2.35 0.29 (1.70, 3.67)
|Price− CE| 0.69 0.25 (0.28, 1.94)
RMSE 1.13 0.41 (0.43, 2.36)
Final 5 Prices 2.50 0.25 (2.05, 4.37)

II. Allocations
Final Distance 0.87 0.49 (0.03, 2.41)
Seller MRS 2.48 0.13 (1.89, 2.78)
BuyerMRS 2.47 0.13 (2.14, 3.20)

III. Efficiencies
Allocative 0.99 0.02 (0.68, 1.00)

- Penalized 0.76 0.11 (0.47, 0.96)
Distance 0.81 0.06 (0.49, 0.94)

- Penalized 0.67 0.09 (0.23, 0.85)
Profit 0.94 0.07 (0.61, 1.11)

Observations 240 240 240

Table A.4: Simulation outcomes for markets with no internal spread reduction rule imposed.

Table A.4 tests whether imposing an internal spread reduction rule impacts the perfor-

mance of the model. An internal spread reduction rule restricts the trader from posting an

order with a worse price than one she has already posted. This is different from the standard
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spread reduction rule, in which traders can only post orders that tighten the best bid-ask

spread.

While price estimates appear to be negligibly worse than the main results, efficiency

estimates are essentially equivalent, and MRS estimates converge (though slightly above

CE). As the MRS estimates are measured for the representative agents, the improvement in

convergence while maintaining the same efficiency levels points to slightly more trading across

trader type (e.g., a trade between two natural sellers leads to no change in the representative

sellers allocation).
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