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Abstract

Gode and Sunder (1993) brought a lower-bound to the literature on bounded ratio-

nality in the continuous double auction, asserting the institutional rules, rather than

the behavior of traders, provide the equilibrating tendencies seen so often in the lab-

oratory. Gode et al. (2004) brought these ‘zero intelligence’ traders to the general

equilibrium paradigm as well, though not before a group of studies began questioning

whether this new lower-bound was truly void of intelligence. This paper tests the driv-

ing assumptions of the general equilibrium adaptation of the zero intelligence model.

I find significant variation in market performance when adjusting enforcement of five

different assumptions. Enforcement of behavioral-oriented and market-oriented rules

show stark differences in their influence on market outcomes, with behavioral-oriented

rules providing the most guidance. 1
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“[T]he main stream for the last 50 years has entered the wilderness of bounded rationality

through the rationality gate... but there have been a few who have entered through the other

(zero intelligence) gate... both of these groups are needed... though we need ‘tunnelers’ from

both directions and we don’t have enough coming from the minimal intelligence direction.”

-J. Doyne Farmer (2020) 2

1 Introduction

A growing literature on boundedly rational behavior in economic agents has been flourishing,

and is long-lived in the study of markets (Conlisk, 1996). In particular, agent-based models

have been a prominent process by which researchers have entered the zero/minimal intelli-

gence gate of the ‘wilderness of bounded rationality’ (Axtell and Farmer, 2022). The study

of trader behavior and price formation in markets, including the continuous double auction

(CDA) institution, has especially benefited from such simple, parsimonious modelling given

how easily a market’s underpinnings can become over-complicated (Farmer, 2003).

Gode and Sunder (1993) postulated a model for double auction behavior which enters

through the gate of no intelligence in a quite literal sense, introducing "zero intelligence"

traders to the literature.3 Zero intelligence traders provide a counter to the traditional ra-

tional traders who hold perfect utility maximizing capabilities when placing orders. Instead,

prices are randomly chosen within a set of allowable prices ranging from 0 to some maximal

price M . If these traders are ‘unconstrained’, then this price rule is the sole rule determining

their trading behavior outside of the rules of the market institution itself. However, if in-

stead ‘constrained’, the ZI traders (now called ZI-C) follow a no-loss rule, or as erroneously

referred to in Gode and Sunder (1993) a “budget constraint.” This no-loss rule updates the

2This quote is from The First Conference on ZI/MI Intelligence Agents in 2020, in a
discussion on agent-based modelling in economics.

3Hurwicz et al. (1975) was likely the first proposal of minimal or zero intelligence in a
pure exchange setting.
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distribution which buying and selling agents can draw from, with buyers being capped above

by their unit’s redemption value and sellers being capped below by their unit cost. A key

result of adding the no-loss constraint is that simulated levels of allocative efficiency are

much closer to those of laboratory markets.

Cliff and Bruten (1997)4 called attention to this claim, providing mathematical and sim-

ulated evidence refuting the idea that ‘zero intelligence is enough’ to provide equilibrium

results. The authors claim that since the supply and demand schedules endowed to the ZI

traders in Gode and Sunder (1993) create a distribution of potential trade prices that is

single peaked at the equilibrium price, constrained ZI agents trading near the CE price is

unsurprising. Cliff and Bruten simulate two economies with schedules that create ‘box’ trade

distributions, eliminating the guidance of the single-peakedness of the original example. Both

example economies confirm Cliff and Bruten’s suspicions, with allocative efficiency falling

drastically for the ZI-C traders. The other major complaint against the ZI-C traders was

made in Gjerstad and Shachat (2021).5 Rather than questioning the original example pa-

rameters, Gjerstad and Shachat question the intelligence imparted by the no-loss constraint.

The authors show such a constraint is equivalent to assuming individual rationality, which

is certainly more than zero intelligence. Other papers also contributed to the questioning

of zero intelligence agents soon after, either by analyzing specific aspects of the model or

presenting adjustments or refinements in new models (e.g. Cliff and Bruten (1998)).

Following the push-back, the authors pushed zero intelligence into more complex mar-

ket settings. First, Gode and Sunder (2004) studied ZI traders in partial equilibrium when

price restrictions are present, arguing ZI trader behavior is immune to such rules.6 Second,

Gode et al. (2004) brought ZI traders to a more complex setting in general equilibrium;

4This paper is one of a group of working papers or technical reports by the authors on
such a topic.

5Though the two papers seem far apart in age, Gjerstad and Shachat’s retort against
ZI-C traders has been around since 1996.

6Though, the authors do acknowledge to some degree the push-back when stating "ZI
traders avoid losses" and not mentioning a budget constraint.
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given the price independence story of partial equilibrium doesn’t always capture real-world

markets, such a model had noticeably been missing. Given the state of experimental in-

terface technology at the time, a simulation-based test held a considerable advantage over

experimental tests in the busier general equilibrium setting. This new ZI model (ZI-GE

henceforth) translated the heart of ZI traders behavior in two steps: (1) traders place orders

via a uniform price draw and a quantity restriction, and (2) traders avoid losses by placing

only utility-improving orders.

Both the partial equilibrium (ZI-C) and general equilibrium versions of the ZI model

rely on a few restrictive assumptions, either institutional or behavioral in nature. In the

spirit of Cliff and Bruten (1997) and Gjerstad and Shachat (2021), this paper provides a

thorough examination of the robustness of zero intelligence traders in GE (as in Gode et

al. (2004)). Using simulations, I test crucial assumptions made in defining the behavior of

ZI-GE traders and the design of the continuous double auction they trade in. As with the

partial equilibrium critiques, these simulations support the “zero intelligence is not enough”

sentiment, in that the behavioral assumptions of GSS provide a substantial improvement in

ability and thus market efficiency.

Five assumptions made in Gode et al. (2004) (henceforth GSS) are considered in the

simulation exercise, many of which have been present in prior works on the continuous double

auction. A spread-reduction rule, which forces new orders to shrink the current best bid-

ask spread, an orderbook reset policy, which resets the orderbook after every trade, and

a single unit quantity restriction form the set of market rules considered. The behavioral

assumptions tested are the no-loss constraint imposed in both Gode and Sunder (1993) and

Gode et al. (2004) and the price decision process made in Gode et al. (2004). By testing all

32 combinations of these five assumptions being enforced (or not), I find significant variation

in key market performance outcomes. Allocative efficiency ranges from 0.34 to 0.94, while

average price deviations are as high as 13.06 and as low as 0.46 for a parametrization with a

competitive equilibrium price of 2.44. Measures of price volatility and trade volume and flow
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are also largely impacted by changes in the assumptions.7 Behavioral-oriented constraints

appear to provide the majority of the variation in outcomes, implying, much like Cliff and

Bruten (1997), that ‘zero’ is indeed not enough. In other words, trader behavior seems to

provide some of the basis for market equilibration, and the institution itself is not solely

responsible.

Along with the zero intelligence literature, this paper belongs to the more general liter-

ature on agent-based modelling in markets. A stream of other agent-based models emerged

in the late 20th century alongside Gode and Sunder (1993). Wilson’s (1987) game theoretic

venture, while informative, showed the limitations complexity places on a strategic approach

to modelling CDA trader behavior. Friedman (1991) and Easley and Ledyard (1993) both

posited non-strategic models with variations on a reservation price mechanism, yet differed

in the dynamics of interest. Friedman studied within-period pricing dynamics, while Easley

and Ledyard focused on across-period dynamics. Gjerstad and Dickhaut (1998) proposed a

belief-based model shortly after, though moving away from zero intelligence towards higher

complexities of trader intelligence. Each model in this group is oriented in a partial equilib-

rium setting; very few models have focused on general equilibrium dynamics in these simple

CDA markets (Gode et al. (2004) and Crockett et al. (2008) are a couple such papers). 8

The rest of the paper continues as follows. Section 2 recounts the zero intelligence mod-

els of Gode and Sunder (1993) and Gode et al. (2004), and provides adjustments to the key

assumptions in the models. Section 3 maps out a vast simulation test of the underlying deter-

minants of the model and environment, while Section 4 analyzes the full factorial of market

configurations and provides insight in potential applications of the model and simulations to

experiments. Section 5 concludes the paper.
7Robustness runs confirm similar results in multiple versions of constant elasticity of

substitution preferences (including a Cobb-Douglas parametrization from Gode et al. (2004)
and CES preferences with strong income effects (an exponent of −1) from Gjerstad (2013).

8See Axtell and Farmer (2022) for a recent survey on the agent-based modelling literature
in economics.
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2 Zero Intelligence

The continuous double auction (CDA) is a ubiquitous market institution, used in markets

around the world. Traders place orders to either buy or sell some units, often one, of a

good. An order contains three key pieces of information: a price, a quantity and a time of

placement. The ‘continuous’ part of the continuous double auction comes from the third

piece, as traders may place orders in continuous time throughout the duration of the market

or trading period. These orders are arranged in an orderbook, separated based on whether

the request is to buy or sell the good. Orders are ranked by price and then by time, with the

buy orders being ranked from highest to lowest price and sell orders ordered from lowest to

highest price. Orders of the same type and price are then ranked by time of placement from

earliest to latest. Trades occur when two orders ‘cross’, meaning the price of a buy order is

higher than the price of a sell order. The trade occurs at the price of the trading order that

appeared first in the orderbook, i.e. the ‘crossed’ order (as opposed to the ‘crossing’ order).

Within a given market period or realization, multiple prices across trades may occur.

Gode and Sunder (1993) present a model of trader behavior in the CDA, with the focal

point being the lack of intelligence imparted on the traders. The model uses a version of

the CDA commonly used in market CDA experiments, as characterized below. Like many

other works in the continuous double auction literature, both theoretical and experimental,

the economy is defined by the trade of a single good by two types of traders: buyers and

sellers. Orders are restricted to being one unit, and each of the n traders may only have

one order in the orderbook at a time. The model considers a partial equilibrium framework,

whereby prices in the market for the single good in focus don’t impact the markets for any

other good in these traders’ universe. As such, trader preferences are simplified to demand

and supply schedules. Each buyer has a demand schedule of redemption values for the m

units of the good they desire and each seller similarly has a supply schedule of unit costs for
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each of the units they produce.9

Traders enter the market uniformly randomly, one at a time, to place an order. Here,

‘enter’ means interacting with the market with the intent to place an order. The side of

the orderbook they place the order in is referred to here as the ‘side of entry’. The trader

constructs their order by uniform randomly drawing a price to pair with their single unit

desired quantity. In the base, or ‘unconstrained’, version of the model, the support of prices

from which both buyers and sellers draw is [0,M ], where M is some maximum allowable

price. In the ‘constrained’ version of the model, ZI-C buyers draw from U [0, vi] where vi

is the buyer’s redemption value for their ith desired unit. ZI-C sellers draw from U [cj,M ],

bounded below by the unit cost of their jth unit. The traders all have ordering preferences

over their demand or supply schedules when selecting the unit to fill the one unit quantity

in their orders. Buyers rank the redemption values highest to lowest, while sellers rank the

unit costs lowest to highest. In addition to the single-unit quantity constraint and schedule

ordering preference, another key rule was enforced in the model of Gode and Sunder (1993),

namely the orderbook is cleared of all orders after the completion of a trade. 10

2.1 General Equilibrium

Gode et al. (2004) expand on the original zero intelligence model by removing the simplifying

assumptions of partial equilibrium and considering a general equilibrium framework instead.

The setting thus expands, though only slightly, to a setting with two goods, X and Y . With

two goods, two types of traders, and no production, the environment becomes an exchange
9Production is assumed to be upon sale, so sellers only incur the unit costs on units of

the good they successfully sell.
10Though not implemented in their GE-adjusted model (Gode et al. (2004)), or in the

markets simulated in this paper, another interesting rule (which, like an orderbook reset,
slows the pace of the market) used in Gode and Sunder (1993) is that the two trading agents
do not enter the market again until all other traders have traded the same number of units,
i.e. if a buyer and seller trade their first units, then every other trader must trade their own
first units before the first two may submit orders again. This is not natural in markets and
could be harmful to trade and efficiency (as trade and price discovery may be slowed).
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economy in an Edgeworth box.

Figure 1: Left: No-loss constraint in ZI-GE. Light grey areas are utility improving and
feasible reallocations, while dark grey areas are not feasible as they constitute either gains in
both goods or losses in both goods. Right: Set step-size. The circle (shown as an ellipse due
to relative good scaling) centered at the trader’s current allocation represents all allocations
satisfying a step-size constraint with r = 2.

This increase in economy complexity comes with an adjustment in a few of the assump-

tions made in Gode and Sunder (1993). First, traders no longer hold demand and supply

schedules, but instead are assumed to have utility functions defining their preferences over

bundles of units, (x, y), of goods X and Y . As such, the no-loss constraint is adjusted to

prevent utility loss, instead of profit loss. Figure 1 (left) visualizes this constraint’s impact on

feasible reallocations. Second, order quantities are limited by a step size as opposed to a unit

limit. Instead of allowing bids or asks of only one unit, trades must satisfy a vector length

constraint which states the distance from the trader’s current allocation to the allocation

they wish to move to (upon acceptance of their new order) must be equal to a set length. In

other words, the step size for all orders is some constant r where r ≡
√

(∆x)2 + (∆y)2 and

∆x and ∆y represent the intended adjustment in x and y. As shown in Figure 1 (right),

this creates an arc of feasible orders in the bid and ask quadrants (relative to the trader’s

current endowment) of the Edgeworth box.

The final adjustment to bring their model to general equilibrium is in the price decision.
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The price of an order is drawn from a uniform distribution over radians. Without a no-

loss constraint, this would mean drawing a radian value (called θ) uniformly in the region

weakly ‘north-west’ of the trader’s current allocation (between π/2 and π holding the current

allocation as the origin) when selling X or weakly ‘south-east’ when buying (between 3π/2

and 2π). However, with the no-loss constraint enforced, this distribution is adjusted to

be bounded either above or below by the MRS of the trader (in radians) at their current

allocation (call this θ(MRSc)) depending on whether the trader is drawing for a buy or sell

order.11 Figure 2 shows this price selection process paired with the above two constraints.

Combining angle-based price choice with the step-size reduces the support of the distributions

even further, as any positive step-size would increase the lowest allowable sell price and

highest allowable bid price.

Figure 2: Feasible orders in market with angle-based price choice, no-loss constraint, and a
set step-size, as in Gode et al. (2004).

All of the above adjustments in prior assumptions are paired with a loosening of trader

roles to define the market. Namely, traders no longer act as only buyers or sellers, but place

an order on both sides of the market every time they are drawn.
11This then adjusts the distributions to be U [π/2, θ(MRSc)] for buys and U [θ(MRSc), 2π]

for sells.
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2.2 Assumptions and Adjustments

Much like the response to the ZI traders of Gode and Sunder (1993), one could question

how minimal, or close to ‘zero’, intelligence these traders are? Is zero intelligence enough

or are the assumptions at play providing the markets price and allocation adjustment with

proverbial guide-rails? To this end, a few further adjustments to the assumptions of Gode

et al. (2004) can be considered.

First, and most similar to prior critiques of Gode and Sunder (1993), the no-utility-loss

constraint can be removed. Analogous, though much more obvious, to the appeal made in

Gjerstad and Shachat (2021), such a constraint is equivalent to individual rationality. This

would mean traders draw from the base distribution described in Gode et al. (2004). Second,

the quantity constraint to create a reallocation bound (via a set step-size) can be loosened,

with a natural (and historical) middle-ground being a unit restriction on the commodity

(X).

Third, the order choice process can be simpler, at least in execution. Rather than

choosing a radian draw, converting this draw to a price, then finding the appropriate x

quantity to satisfy the set step-size constraint, the trader could just uniformly draw a desired

reallocation from the set of feasible allocations (i.e. (x, y) pairs that are neither better in

both goods, nor worse in both). From this desired reallocation, the trader can back out the

required price and quantity of the order needed to reach the new bundle (were it to be fully

filled). Orders to buy or sell are defined in the following spaces:

Buy : [Xcurrent,i,
n

2
· (Xendow,b +Xendow,s)]× [0, Ycurrent,i] (1)

Sell : [0, Xcurrent,i]× [Ycurrent,i,
n

2
· (Yendow,b + Yendow,s)] (2)

Xcurrent,i is the X holding of trader i in his current allocation, and Xendow,b+Xendow,s denotes

the total X holding of a buyer-seller pair at the inception of a market. Here n denotes
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the number of traders in the market. The feasible choice set, under no other assumptions

previously discussed, is shown in Figure 3.12 Though the difference in complexity between

the two choice methods is apparent, the impact on potential order placement is considered

further in Appendix C.

Figure 3: Feasible orders under simpler reallocation/order choice. Here x and y are shown
with minimal ticks/increments, creating a lattice. With no minimal tick, the entire second
and fourth quadrant relative to the current allocation are feasible orders.

3 A Test of Zero Intelligence

I present a test of the ZI-GE model via a full factorial simulation exercise. Each assumption

or rule housed in the model, market, and/or setting is incrementally varied, yielding market

outcomes for each potential combination.
12Note this visualization considers the case where units of x and y have a minimal tick, or

increment, which is often seen in real-world markets. The result is a lattice over which the
trader can uniformly draw a desired reallocation (and resulting order to place to feasibly get
there).

10



3.1 Trading Institution

Consistent with the institution of choice in both GS and GSS, the simulations employ the

continuous double auction (CDA) trading institution, though in a highly stylized variation.

A simple market over two goods, X and Y , provides the space for trade, with Y acting as

a numeraire (or a good whose price is normalized to 1). As such, trade can occur strictly

using the two goods while using units of Y as a price for commodity X.

As defined in Section 2, this implies a specific structure over the order placement process

and order structure. In this two good pure exchange setting, this order structure simplifies

to specifying a desired quantity (in units of X), a price (in units of Y per unit of X), and

a determination of whether the order is to buy or sell said quantity. The quantity may

vary in number of units and contain partial units, implying units of the commodity X are

divisible. The price may vary in a similar fashion. While minimal ‘ticks’, or subunits,

are often specified in real-world markets, the more theoretical and computational nature of

the simulation exercise does not require such restriction. In effect, the quantity and price

variables are continuous, each on R+, though with upper bounds determined by the holdings

of the traders and the total units defining the market as a whole. All orders are contained

in the orderbook.

These orders are placed by traders in ‘continuous’ time, where time is defined by a set

number of time increments, or trader entries. In each entry, a uniformly randomly drawn

trader places an order to the orderbook, which contains all orders until they are either

canceled or filled. An order is filled if the entirety of its desired quantity is traded.

3.2 Environment and Parametrization

Each market contains eight computerized traders programmed to follow the behavior as

prescribed in the ZI-GE model. Traders are split evenly into two types, natural buyers and
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natural sellers. Natural buyers (sellers) have marginal rates of substitution above (below)

the competitive equilibrium price; traders are two-way traders as in ZI-GE, however they

only place one order at a time to simplify the market. Traders within a type are replicas of

each other, meaning they have the same starting endowments and preferences as each other.

Traders are assumed to have constant elasticity of substitution (CES) preferences over

the two goods, X and Y :

u(xi, yi) = cτ ((aτxi)
ρτ + (bτyi)

ρτ )
1
ρτ (3)

where subscript τ refers to the type of trader. In general, adjustments in ρ can represent other

popular preferences as well, such as Cobb Douglas (ρ → 0), Leontief (ρ → −∞) or perfect

substitutes (ρ = 1). CES preferences are chosen as prior experimental literature (Williams

et al. (2000) and Gjerstad (2013)) has induced subjects with such preferences. Additionally,

given Gode et al. (2004) uses relatively standard Cobb-Douglas preferences, a ρ somewhere

in (−1, 1) can maintain a similar testbed while being close to previous experimental works.

The parameters used in this paper’s simulations are as shown in Table 1. The (a, b) values

follow the convention from Williams et al. (2000), in that they sum to 1; the relative ratios

in the a and b values for buyer and sellers are meant to induce a higher preference for the

non-numeraire in the buyers than the sellers. The endowments were chosen close to a corner

of the Edgeworth box to allow for a decently large lens and contract curve, and thus room

for more movement in allocation (and possible prices) throughout the market.

c a b ρ (xEndow, yEndow)
Buyers 0.113 0.825 0.175 0.5 (3,23)
Sellers 0.099 0.6875 0.3125 0.5 (11,3)

Table 1: Simulated Agent Parameters.

A subset of the simulation process is also run using a parametrization from Gode, Sunder

and Spear as well (see Appendix H.2).
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3.3 Equilibrium

The environment defined above determines a unique competitive equilibrium price, which

implies equilibrium final allocations for all traders. To determine said price, the excess

demand for a good, consider X as it is non-numeraire, is solved for a root, or the price which

zeroes out the market’s excess demand. Each trader i possesses some excess demand, Zi over

good X, defined as difference in their inverse demand for X and their starting endowment

of X. For the CES preferences described above, this is written as

ZX
i (p|(xi,o, yi,o)) =

aγi(yi,o + pxi,o)

p(aγi + pγibγii )
− xi,o (4)

where where (xi,o, yi,o) is the initial bundle of trader i and γi =
ri

1−ri
.

The individual excess demands are aggregated to find the market’s excess demand for

X, with the competitive equilibrium price solving

ZX ≡
∑
i

ZX
i = 0 (5)

For the parametrization given in Table 1, the equilibrium price is 2.44. This is true for

any realization of this market so long as the number of natural buyers equals the number

of natural sellers. By entering the CE price into the buyer’s excess demand function, it

is revealed that the buyer desires roughly 5.2 units of X in equilibrium, at the CE price.

Accordingly, the equilibrium final allocation for natural buyers in this market is (8.2, 10.31).

A similar process gives a final natural seller allocation (5.8, 15.69).

The exact assumptions and market rules are determined at the simulation level, while

endowment determination is at the period level and orders/trades occur at the entry level.

The set of constraints, as well as the simulation design and technical notes, are described in

the next subsection.
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3.4 Design

A set of five constraints define the ‘treatment’ factors in this simulation test: (1) spread re-

duction rule , (2) single-unit quantities, (3) angle-based price choice process, (4) orderbook

resetting, and (5) no-loss constraint. Each factor has two levels, either 0 or 1, representing

exclusion or inclusion in the simulated market; see Table 2 for a summary of the definitions

given in Section 2. These constraints can be partitioned into two types, behavioral assump-

tions and market rules. Constraints (3)and (5) are crucial behavioral assumptions made in

ZI-GE, while (1),(2) and (4) are market rules enforced in the CDA of ZI and/or ZI-GE.

Given the distinction between the two rule sets, expectations over the implications of

each in isolation may differ. As the names may suggest, behavioral assumptions are those

that impart some intelligence (such as individual rationality) or more sophisticated order

choice process or capability. Market rules, on the other hand, either adjust the allowable

structure of orders (as in a single unit restriction), or adjust the criterion for which orders

may either enter or exist in the orderbook (such as the case when imposing a spread reduction

rule or and orderbook reset rule, respectively).

A few technical notes on the implementation and design choices made with respect

to these constraints should be made. While the angle-based price-choice process has been

defined fully under the enforcement of a set step-size, the choice of quantity is currently

undefined when such a rule is not enforced. This is important as such a scenario happens in

all simulated markets with no quantity restriction and with an angle-based process, i.e. one

in four markets in this simulation. Figure 4 displays a reasonable process for such a case.

Once an angle (θ) has been drawn, the quantity (or units of x) is uniformly randomly drawn

along the price vector at the drawn angle. If the no-loss constraint is not enforced, then

the upper bound on the quantity choice is determined by the bounds of the Edgeworth box.

However under a no-loss constraint, the rule for the upper bound is piece-wise and depends

on the drawn angle. If the entirety of the price vector is utility improving, the upper bound
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Definitions
Description

Rules: Orientation Rule Not Enforced Rule Enforced
Spread Reduc-
tion (SR)

Market Any order is posted to
the orderbook

New orders must improve
the best bid-ask spread;
new buys (sells) only
post to the orderbook
if they are higher-priced
(lower-priced) than the
best buy (sell)

Single Unit (SU) Market Order quantities are di-
visible and can be multi-
ple units

Orders are restricted to
have a quantity request
of 1 (unit of X)

Lattice/Angle
(LA)

Behavioral Price and quantity de-
rived from uniform ran-
dom draw over alloca-
tions in feasible space

Prices are drawn via a
uniform distribution over
radians

Orderbook Re-
set (OBR)

Market Non-trading orders re-
main in the orderbook af-
ter a trade occurs

After a trade occurs, the
state of the orderbook
will be reset, with all
non-trading orders being
removed

No Loss (NL) Behavioral Orders may be utility-
reducing

Orders may only be
placed if they weakly
improve the trader’s
utility upon fully filling

Table 2: Definitions and notation for design rules.
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is determined again by the Edgeworth box, but if the price vector is not entirely improving,

then the upper bound is the x associated with the intersection of the price vector and the

indifference curve.

Figure 4: Quantity decision for angle-based order choice when a set step-size is not enforced.

The second technical note is less of a market design choice and more of an experimental

design choice. With respect to the set step-size constraint, the determination or selection of

a specific r to test is arbitrary. As shown in Appendix B, this selection has large bearings

on the performance of the simulated markets and is quite sensitive. Given how arbitrary

the selection of r is and how sensitive the market response is to it, I test a milder, or

more appropriately, older, quantity constraint. Namely, I include a single-unit restriction

as the simulated quantity constraint. Such a selection seems appropriate for a few reasons:

(1) the vast majority of the partial equilibrium literature assumes such a constraint, (2) the

constraint is not uncommon in the general equilibrium experimental literature (e.g., Gjerstad

(2013)), and (3) Gode et al. (2004) reference such a constraint in relation to the set step-size

assumption. With respect to (3), Gode et al. claim such a choice has asymmetric impacts

on the two goods in the market. I consider this in the analysis, however, restricting only x

to a single-unit constraint and allowing y to move freely (i.e. as a numeraire or cash) mimics

many real-world settings with indivisible units and wide price dispersion, so it seems like a
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relevant dimension to include.

Finally, the lattice reallocation choice rule is run taking the x and y axes as continuous,

i.e. making the lattice ticks infinitely small.13 As mentioned in Section 2.2 and Figure 3,

this just simplifies the choice process to drawing a point from a continuous rectangle (see

sets 1 and 2), where any point is a feasible reallocation.

Wholly, these factors combine to create a full factorial (simulated) experimental design

with a total of 25 treatments. The five main effects and 27 interactions are tested in Section

4, with the simplest, or lowest level of ‘zero’, being the control/holdout. Each of the ‘factors’

in the design are named for analysis as follows: spread reduction (SR), single unit (SU),

lattice/angle (LA), orderbook reset (OBR), and no loss (NL). For each of the 32 variations,

I run 250 simulations. Each simulation has 3600 market entries across 12 rounds, i.e. 300

entries per round (market realization).

3.5 Outcomes

To analyze the respective performances of full factorial of market orientations, a set of out-

comes in price, allocation, market participation, efficiency and convergence are all examined.

In price space, outcomes can either reflect the approximate slope from starting to final

allocation or the variation across trades between these points. Average price and per-unit

average price are reported to describe the former; average price gives all trades equal weight

(i.e. disregards quantity), while per-unit average price weights each trade by its quantity

(alternatively, this can be described as dividing the total units of Y traded by the total units

of X traded in the round). To capture price variation or volatility, again two metrics are

used: namely average absolute price deviation from the competitive equilibrium price, and

root-mean-squared error. Root-mean-squared error, or RMSE, is defined as the square root
13In practice, this continuity is limited by computer precision, which in R is 1e-16. The

command runif() was used to draw values, drawing from a continuous support.
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of the average of squared deviations from CE price, or

RMSE ≡

√√√√ 1

n

n∑
i

(Pi − PCE)2

In allocation space, measures of marginal rates of substitution reflect how effective

traders have been in reallocating throughout the market, especially towards the CE alloca-

tion bundle. In particular, the MRS estimates for the final allocations of aggregated buyers

and sellers (or an average over the set of buyer and sellers, respectively) in each round are

reported. Order/trade sizes and trade counts are reported to capture a sense of market

participation and aggression, while also giving an idea of potential speed of convergence.

The two estimates of efficiency of interest here are allocative efficiency and distance

efficiency. Allocative efficiency, here, is a general-equilibrium adaptation of the standard

measure of allocative efficiency; specifically, the measure reported here is the sum of gained

utilities across all traders divided by the sum of expected gain utilities (giving a reasonable

analog to the relative surplus gain studied in the original definition). Distance efficiency,

a new measure, makes use of the distance measure proposed in Gjerstad (2013), which is

the average Euclidean distance between an allocation and the CE allocation for each trader

(where the numeraire distance is normalized by the CE price). Efficiency in using this

measure is defined as the difference in [distance from endowment bundle to CE bundle] and

[distance from final allocation to CE], all normalized by the [distance from endowment bundle

to CE bundle].14 As the numeraire is normalized by the CE price, if a considerable amount of

disequilibrium trade occurs, the distance measure, and thus efficiency measure, becomes more

critical of the allocations (reducing efficiency quickly and to potentially negative values).

Finally, convergence, though already somewhat captured by the efficiency measures and

MRS estimates, is examined within-round. Adjustment within-round between early prices
14This measure places all allocations with the same estimate on a circle around the CE

bundle.
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and round-end prices is captured by the statistic Aw (also borrowed from Gjerstad (2013)),

which divides the sum of price deviations in the first five trades by the sum of deviations

in the last five trades of a round. The speed or intensity of convergence, in the sense of

reducing price deviations, is reported by examining the relationship between these summed

price deviations and time-in-round.

4 Analysis

4.1 Model Performance & Investigation

Rule Breakdowns

Outcomes None Enforced Only Market Only Behavioral All Enforced
Prices. [CE=2.44]

Average Price 2.30 (1.74) 15.41 (1.81) 1.99 (0.16) 1.99 (0.20)
Per-Unit Avg. 1.67 (0.38) 15.41 (1.81) 1.88 (0.15) 1.99 (0.20)
|Price− CE| 1.46 (1.69) 13.06 (1.79) 0.65 (0.10) 0.77 (0.11)

RMSE 2.00 (5.09) 15.13 (2.05) 0.77 (0.11) 0.91 (0.12)
Volume.

Order Size 14.96 (1.02) 1.00 (0.00) 5.76 (0.59) 1.00 (0.00)
# Trades 18.05 (4.66) 26.03 (3.78) 30.34 (4.58) 18.85 (1.62)
Trade Size 3.51 (0.74) 1.00 (0.00) 0.50 (0.08) 1.00 (0.00)

Efficiencies.
Allocative Eff. 0.65 (0.17) 0.65 (0.17) 0.83 (0.05) 0.92 (0.03)
Distance Eff. 0.33 (0.13) 0.24 (0.09) 0.60 (0.06) 0.73 (0.06)
Seller MRS 2.02 (0.46) 1.78 (0.24) 1.71 (0.11) 2.00 (0.12)
Buyer MRS 3.08 (0.56) 3.65 (0.71) 3.40 (0.17) 2.99 (0.16)

Table 3: Outcome averages by treatment. Only Market is equivalent to SR:SU:OBR, while
only behavioral is the same as LA:NL. Standard deviations are in ().

Table 3 reports descriptive statistics for four naturally interesting rule combinations,

namely markets with no rules enforced, only market rules enforced, only behavioral rules

enforced or all rules enforced (see Appendix A for an expansive table on all 32 combina-

tions).15 Each estimate shows the average outcome across the 250 simulations ran for each

state of the model. Price estimates for the fully unconstrained markets (“None Enforced")

15Also see Appendix F for a visualization of the adjustments in allocative efficiency across
different market and behavioral rule combinations.
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are highly variable, with the average deviation being over half the magnitude of the CE price

itself. Also the standard deviations on both price and price deviation are massive relative to

their magnitude. Per-unit average price significantly undershoots the CE prediction, falling

nearly a unit under the estimate consistently.16 Given the disparity between average price

and the per-unit average, successful orders are increasing in size at greater than a one to one

rate when decreasing price. Allocative efficiency comes in far below those estimated in the

orientation closest to GSS (“All Enforced"), with the average of 0.65 for “None Enforced"

sitting much closer to the performance of the unconstrained ZI agents of Gode and Sunder

(1993).

Introducing only market rules seems to create two hindrances to market performance.

As orders (and thus trades) are restricted to be unit-quantity, price variation is determined

via a uniform draw between 0 and the slope of the line from a trader’s current allocation

and the allocation holding either all Y in the market and one less unit of X or no Y and

one more unit of X. This places much higher probability on more extreme prices compared

to markets where traders have access to the full set of feasible reallocations, as is realized

in the average price measures which are roughly six times the expected level. Additionally,

given the restricted trade size, increased trade frequency is likely needed to accommodate the

excess demand existing at the start of the market round. However, both a spread reduction

rule and an order-reset rule have slowing qualities, leading to low trade volume. Given the

expected trade volume in the market is roughly 20.8 units, the 26 units traded on average

in “Only Market" markets seems too low (given the high price level and volatility) to reach

efficient reallocations.

The “Only Behavioral” markets, however, perform markedly better. Price estimates

are far less volatile, with average absolute deviation being just over half of a unit, and

RMSE being a third of that reported for markets with no rules enforced (and roughly 20

16Price (or average price) here refers to the average price when treating each trade as
equal (ignoring trade volume), while per-unit average price is the total y traded in a period
divided by the total x traded in the period.
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times less than those using only market rules). Both measures of efficiency are considerably

higher, though average traded volume (roughly 15 units with 30 orders traded at half of a

unit on average) still leaves average final allocations somewhat short of the contract curve.

Enforcing all rules improves upon these results, with allocative efficiency reaching 0.92 on

average, distance efficiency another 0.13 units higher than “Only Behavioral” markets, and

aggregate agent MRS measures giving the tightest window around the CE price of the four

combinations. Given the noticeable improvement in price, allocation and efficiency measures,

the behavioral rules seem to impart traders with more intelligence than would be considered

‘zero’.

By comparing ‘None Enforced’ to ‘Only Behavioral’ and ‘Only Market’ to ‘All Enforced’,

adjustments from increasing trader intelligence (via individual rationality, NL, and a thinner

price distribution, LA) with and without market rules enforced can be explored. Under the

enforcement of no market rules, behavioral rule enforcement reduces price deviation by over

half, and RMSE to nearly a third of its magnitude without. Allocative efficiency improves by

0.18 and distance efficiency nearly doubles, while trades are more frequent and both orders

and trades occur at much smaller quantities. When all market rules are already enforced,

efficiencies rise to an even greater extent from increasing trader intelligence through NL and

LA rule; allocative efficiency increases by 0.27 and distance efficiency by 0.49. Trade counts

fall, but trades are filled at prices much closer to the CE price. As such both price deviation

and RMSE plummet. In either case, behavioral rule enforcement, and thus more than zero

intelligence, improve market performance above what the market itself can naturally provide.

An interesting followup to examining the market performances of markets with rules

clustered by type is isolating each of the rules and testing them individually. Table 4 reports

estimates of the same set of outcomes for markets where only one rule is enforced. First,

a no-loss constraint performs as expected in prices, with averages sticking close to the CE

price, and both measures of volatility being quite low (comparable to ‘Only Behavioral’ and

‘All Enforced’ markets in Table 3). Given the large reduction in feasible trade prices in NL
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Rule Breakdowns

Outcomes Only NL Only OBR Only LA Only SU Only SR
Prices. [CE=2.44]

Average Price 2.42 (0.63) 3.76 (14.52) 1.55 (0.73) 15.25 (1.58) 2.00 (2.26)
Per-Unit Avg. 2.38 (0.60) 1.78 (0.48) 1.11 (0.13) 15.25 (1.58) 1.63 (0.30)
|Price− CE| 0.64 (0.37) 2.91 (14.52) 1.58 (0.70) 12.81 (1.58) 1.19 (2.23)

RMSE 0.70 (0.39) 6.72 (62.77) 3.08 (7.78) 14.18 (1.74) 1.78 (10.29)
Volume. [CE = 5.2 p.t.]

Order Size 15.30 (0.88) 14.78 (1.00) 40.28 (343.31) 1.00 (0.00) 8.94 (1.42)
# Trades 2.02 (1.17) 13.88 (3.33) 139.22 (9.47) 27.04 (4.43) 24.38 (4.83)
Trade Size 3.49 (1.39) 3.75 (0.89) 2.25 (0.22) 1.00 (0.00) 3.26 (0.56)

Efficiencies.
Allocative Eff. 0.35 (0.19) 0.68 (0.16) 0.67 (0.18) 0.64 (0.17) 0.66 (0.16)
Distance Eff. 0.26 (0.15) 0.33 (0.13) 0.15 (0.16) 0.24 (0.09) 0.36 (0.13)
Seller MRS 1.32 (0.28) 1.97 (0.42) 2.09 (0.57) 1.77 (0.24) 2.05 (0.45)
Buyer MRS 4.37 (0.67) 3.12 (0.54) 3.08 (0.61) 3.70 (0.69) 3.04 (0.54)

Table 4: Outcome averages by treatment for each rule in isolation. () report standard
deviations. [] denotes competitive equilibrium estimates; the CE price is 2.44 and the CE
trade volume is 5.2 units of X per trader (p.t.).

markets versus those not imposing NL, the average number of trades is one of the lowest

among all rule-combinations (see Table A.1). As a result, efficiency levels appear to be quite

low; though, at an efficiency-unit-per-trade level, the performance is much more impressive.17

Relative to the ‘None Enforced’ markets, imposing only an orderbook reset rule essentially

slows trade (five fewer trades with no change in trade or order size) and does not allow prices

to develop long enough to improve in either volatility or price level (in fact both are worse).

Giving traders the sophistication to chose price via an angle-choice process leads to high

trade counts and low average price measures. These can both be explained by the distribu-

tional implications of the process when converting to prices (see Appendix C). Single Unit

markets, much like in ‘Only Market’ markets, drastically increase price volatility and levels.

Allocative efficiency is on par with the other rules in isolation, though the distance and MRS

estimates suffer due to the allocation path being much steeper than the CE path. Finally,

markets imposing a spread reduction rule show little difference in performance compared to

‘None Enforced’ markets, with nearly identical per-unit average price, efficiency (both) and

17Increasing the round length to 3000 entries and 10000 entries results in 5.5 trades and
6.2 trades on average, resulting in efficiency levels of 0.83 and 0.89. At much higher entry
counts, it would be expected that NL markets would reach the contract curve via the slow
collapse of the lens to a point, and thus also report efficiency values very near to 1.
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MRS values. As mentioned with the NL markets, it may be the case that longer rounds could

tease out larger differences across rule combinations or help accommodate slower markets

(justifying potentially poor performances in the standard runs); such results can be found in

Appendix H.1 with estimates for 1000-entry rounds reported. Though, it should be noted,

while longer runs point towards performance in the limit, these runs are still finite, with

each period having finite bids and asks and thus inefficiency and final allocations off of the

contract curve.18

Prices.
Rule-Combo Ranks

Outcomes Best Worst
Average Price NL SR:SU:OBR

2.42 (0.63) 15.41 (1.81)

Per-Unit Avg. OBR:NL SR:SU:OBR
2.39 (0.62) 15.41 (1.81)

|Price− CE| SR:NL SR:SU:OBR
0.46 (0.20) 13.06 (1.79)

RMSE SR:NL SR:LA:OBR
0.53 (0.23) 42.16 (314.01)

Table 5: Best and worst rule-combinations
for price outcomes. Bolded rules are be-
havioral and italicized rules are market-
oriented. Estimates and (standard devi-
ations) reported.

Efficiencies.
Rule-Combo Ranks

Outcomes Best Worst
Allocative Eff. SR:SU :LA:NL OBR:NL

0.94 (0.03) 0.34 (0.18)

Distance Eff. SR:SU :LA:NL SR:LA
0.75 (0.06) 0.12 (0.17)

Seller MRS SR:LA SU:OBR:NL
2.10 (0.55) 1.22 (0.15)

Buyer MRS SR:SU :LA:NL SU:OBR:NL
2.93 (0.15) 4.80 (0.39)

Table 6: Best and worst rule-combinations for
efficiency outcomes. Bolded rules are behav-
ioral and italicized rules are market-oriented.
Estimates and (standard deviations) reported.

In addition to investigating rules in isolation and type-clustered markets, best and worst

performing rule-combinations are reported. Tables 5 and 6 identify which combinations rank

first or last in price and efficiency measures. In price space, one rule has a clear advantage in

approaching the CE price and maintaining low price volatility: NL. On the other hand, SR,

OBR and SU are all associated (when combined) with poor price performance. As earlier

analysis suggests, the single-unit rule is generating the higher prices, while SR and OBR slow
18This is particular to NL markets (non-NL markets need not tend to efficient allocations

at the run level, but only on average), and explains why the theoretical predictions in Hurwicz
et al. (1975) don’t come to fruition even in the longer runs.
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the market. In terms of efficiency measures, again a trend appears: the angle-choice process

catalyzes reallocation more efficiently.19 NL (when not paired with LA) is associated with

low estimates, though this is again driven by low trade count. NL and LA paired together

lead to the highest outcomes as NL’s price performance helps adjust the direction of LA’s

allocation path, which due to high trade counts already approached optimal allocations on

its own. As with the ZI-C in partial equilibrium, behavioral rules here (and particularly the

individual rationality imposed by NL) drive improvements in price performance, as opposed

to the market (rules) itself.

Figure 5: Final allocations for aggregated agents in SR:SU:LA:NL (left) and SR:LA (right)
markets. Light grey dots denote final allocations. Dotted lines show the starting lens while
the dashed line shows the set of Pareto optimal allocations (the portion within the lens
represents the contract curve). The solid black line shows the best allocation path in each
set of markets, while the dashed-dotted line shows the worst path.

Figure 5 gives a snapshot into convergence of the simulations in allocation-space. Ag-

gregated agent final allocations are plotted relative to the market’s starting lens and set

of Pareto optimal allocations. The left panel shows such allocations for SR:SU:LA:NL (or

markets with only the orderbook reset rule not enforced), while the right panel does so for

SR:LA markets; these are the highest and lowest averaging market orientations for the dis-
19Given the analysis in Appendix C, this may is likely related to the low CE price.
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tance efficiency statistic. Final allocations cluster in a small group that reaches just short

of the contract curve in a relatively consistent manner. The best and worst allocation paths

from the SR:SU:LA:NL sessions also show minute price adjustment across trades, and no

churn (or buying and selling back and forth, which would appear as oscillation towards and

away from the contract curve). Both of these suggest convergent tendencies in the allocation

paths. SR:LA markets, on the other hand, are scattered throughout the Edgeworth box,

often falling well outside the initial lens. Additionally, whether in the best or worst allo-

cation path in the bunch, a significant amount of oscillation appears. Clearly, varying the

rule-orientation has large consequences in both final allocations and within-round allocation

adjustment. In particular, enforcing a no-loss constraint ensures (1) a final allocation within

the initial lens, and (2) more direct allocation paths (as price adjustment necessarily reduces

as more trades occur).

Dependent variable:

Per-Unit Avg. |Price− CE| # Trades Seller MRS Buyer MRS Alloc. Eff. Dist. Eff.

Spread Red. (SR) 0.097∗∗∗ 0.060 0.505∗∗∗ 0.096∗∗∗ −0.184∗∗∗ 0.057∗∗∗ 0.044∗∗∗
(0.021) (0.216) (0.110) (0.002) (0.004) (0.001) (0.001)

Single Unit (SU) 3.970∗∗∗ 2.135∗∗∗ −8.213∗∗∗ −0.068∗∗∗ 0.211∗∗∗ 0.053∗∗∗ 0.077∗∗∗
(0.021) (0.216) (0.110) (0.002) (0.004) (0.001) (0.001)

Lattice/Angle (LA) −4.263∗∗∗ −2.230∗∗∗ 43.468∗∗∗ 0.275∗∗∗ −0.697∗∗∗ 0.255∗∗∗ 0.186∗∗∗
(0.021) (0.216) (0.110) (0.002) (0.004) (0.001) (0.001)

OB Reset (OBR) 0.074∗∗∗ 0.981∗∗∗ −11.566∗∗∗ −0.055∗∗∗ 0.070∗∗∗ −0.005∗∗∗ −0.018∗∗∗
(0.021) (0.216) (0.110) (0.002) (0.004) (0.001) (0.001)

No Loss (NL) −2.308∗∗∗ −4.506∗∗∗ −41.880∗∗∗ −0.347∗∗∗ 0.573∗∗∗ −0.053∗∗∗ 0.171∗∗∗
(0.021) (0.216) (0.110) (0.002) (0.004) (0.001) (0.001)

Round −0.001 −0.009 −0.001 −0.001∗∗ 0.001 −0.0001 −0.00000
(0.003) (0.031) (0.016) (0.0003) (0.001) (0.0001) (0.0002)

Constant 4.996∗∗∗ 5.081∗∗∗ 43.519∗∗∗ 1.839∗∗∗ 3.499∗∗∗ 0.541∗∗∗ 0.166∗∗∗
(0.032) (0.335) (0.171) (0.003) (0.006) (0.002) (0.002)

Observations 95,473 95,473 96,000 95,469 95,473 96,000 96,000
Adjusted R2 0.490 0.007 0.767 0.324 0.399 0.419 0.391

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 7: Main effects or first differences, with a round time control added. The independent
variables are treatment arm indicators.
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While a full factorial analysis is informative of the incremental response to variation in

the market’s design, the main effect of relaxing or enforcing an assumption may be hard

to discern.20 Tables 7 and 8 show such impacts for a variety of variables in prices, efficien-

cies and measures of volatility. In first differences, allocative and distance efficiencies show

unified trends, though with one divergent mechanism. Signs (and magnitude) match on ef-

ficiency estimates for all rules except No Loss, where a large positive coefficient for distance

efficiency is met with a relatively small (yet significant) negative coefficient for allocative

efficiency. This is reconciled by the lower trade count with allocation adjustments closer to

the equilibrium path. Spread reduction and single unit assumptions show small, yet signif-

icant improvements in allocative efficiency while orderbook resetting, much like the no-loss

constraints, leads to a mild reduction. Angle choice leads to a rather large improvement,

likely driven by the more competitive order pricing and increased trade count.

Prices show consistent trends within rule, with an interesting across rule trend being

put on display. Market-based rules (spread reduction, single unit, and orderbook reduction)

show increases in price measures while behaviorally-based rules (no loss and lattice/angle)

yield reductions. Distributional changes in prices vary wildly, however, between like-rule-

type markets. A massive redistribution, or flattening, occurs with single-unit constrained

markets, while orderbook resetting markets see a small shift right in price (as shown in Figure

E.1). Markets with traders who either use an angle choice process for their orders or follow

a no-loss constraint report nearly identical adjustments in average round-average price, over

halving the estimates from just below 6 units of y per unit of x, to relative prices just over 0.2

units above the CE prediction. Distributional changes, however, are quite different between

these two sets of markets. Figure E.1 shows the mass of the distribution funnelling quite

close to the mean for angle-choice markets, however the support for the distribution remains

unchanged. No-loss constrained markets also show tighter mass near the CE price. The

massive reduction in the size of the support is perhaps the more remarkable result when
20See appendix A for such an analysis.
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giving traders the intelligence to always obey their own preferences.

Dependent variable:
Per-Unit Avg. |Price− CE| # Trades Seller MRS Buyer MRS Alloc. Eff. Distance Eff.

Spread Red. (SR) 0.063∗∗∗ 0.151 0.571∗∗∗ 0.123∗∗∗ −0.257∗∗∗ 0.079∗∗∗ 0.058∗∗∗
(0.023) (0.482) (0.113) (0.004) (0.007) (0.002) (0.002)

Single Unit (SU) 10.601∗∗∗ 8.300∗∗∗ −4.896∗∗∗ −0.335∗∗∗ 0.693∗∗∗ 0.022∗∗∗ −0.028∗∗∗
(0.023) (0.482) (0.113) (0.004) (0.007) (0.002) (0.002)

Lattice/Angle (LA) −3.305∗∗∗ −0.553 90.390∗∗∗ 0.016∗∗∗ −0.012∗ 0.092∗∗∗ −0.099∗∗∗
(0.023) (0.482) (0.113) (0.004) (0.007) (0.002) (0.002)

OB Reset (OBR) 0.078∗∗∗ 2.401∗∗∗ −18.510∗∗∗ −0.032∗∗∗ 0.008 0.038∗∗∗ 0.009∗∗∗
(0.023) (0.483) (0.113) (0.004) (0.007) (0.002) (0.002)

No Loss (NL) −2.208∗∗∗ −3.954∗∗∗ −33.017∗∗∗ −0.653∗∗∗ 1.099∗∗∗ −0.200∗∗∗ 0.050∗∗∗
(0.023) (0.485) (0.113) (0.004) (0.007) (0.002) (0.002)

SR:SU 0.193∗∗∗ 0.268 0.133 −0.074∗∗∗ 0.159∗∗∗ −0.052∗∗∗ −0.047∗∗∗
(0.020) (0.432) (0.101) (0.004) (0.006) (0.002) (0.001)

SR:LA −0.155∗∗∗ −0.128 −3.811∗∗∗ −0.098∗∗∗ 0.243∗∗∗ −0.083∗∗∗ −0.061∗∗∗
(0.020) (0.432) (0.101) (0.004) (0.006) (0.002) (0.001)

SR:(OBR) 0.036∗ −0.363 0.736∗∗∗ −0.026∗∗∗ 0.040∗∗∗ −0.003∗∗ −0.003∗∗
(0.020) (0.432) (0.101) (0.004) (0.006) (0.002) (0.001)

SR:(NL) 0.033 0.082 2.809∗∗∗ 0.147∗∗∗ −0.299∗∗∗ 0.095∗∗∗ 0.084∗∗∗
(0.020) (0.432) (0.101) (0.004) (0.006) (0.002) (0.001)

(SU):(LA) −7.584∗∗∗ −7.853∗∗∗ −26.139∗∗∗ 0.330∗∗∗ −0.885∗∗∗ 0.149∗∗∗ 0.355∗∗∗
(0.020) (0.432) (0.101) (0.004) (0.006) (0.002) (0.001)

(SU):(OBR) −0.004 −1.829∗∗∗ 12.348∗∗∗ 0.074∗∗∗ −0.089∗∗∗ −0.017∗∗∗ 0.008∗∗∗
(0.020) (0.432) (0.101) (0.004) (0.006) (0.002) (0.001)

(SU):(NL) −5.832∗∗∗ −2.870∗∗∗ 7.024∗∗∗ 0.209∗∗∗ −0.151∗∗∗ −0.018∗∗∗ −0.107∗∗∗
(0.020) (0.432) (0.101) (0.004) (0.006) (0.002) (0.001)

(LA):(OBR) 0.131∗∗∗ 1.187∗∗∗ −17.766∗∗∗ −0.029∗∗∗ 0.019∗∗∗ −0.011∗∗∗ −0.023∗∗∗
(0.020) (0.432) (0.101) (0.004) (0.006) (0.002) (0.001)

(LA):(NL) 5.733∗∗∗ 3.482∗∗∗ −46.129∗∗∗ 0.318∗∗∗ −0.751∗∗∗ 0.270∗∗∗ 0.299∗∗∗
(0.020) (0.432) (0.101) (0.004) (0.006) (0.002) (0.001)

(OBR):(NL) −0.172∗∗∗ −1.840∗∗∗ 18.571∗∗∗ −0.066∗∗∗ 0.153∗∗∗ −0.054∗∗∗ −0.034∗∗∗
(0.020) (0.432) (0.101) (0.004) (0.006) (0.002) (0.001)

Round −0.0004 −0.009 0.004 −0.001∗∗ 0.001 −0.0001 −0.00000
(0.001) (0.031) (0.007) (0.0003) (0.0005) (0.0001) (0.0001)

Constant 3.061∗∗∗ 2.583∗∗∗ 30.463∗∗∗ 2.033∗∗∗ 3.111∗∗∗ 0.610∗∗∗ 0.283∗∗∗
(0.022) (0.477) (0.112) (0.004) (0.007) (0.002) (0.002)

Observations 95,473 95,473 96,000 95,469 95,473 96,000 96,000
Adjusted R2 0.878 0.012 0.951 0.439 0.576 0.585 0.720
Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 8: Treatment effects including second order interactions. Treatment labels are ty-
pographed to correspond to rule orientation. Market-oriented rules are italicized (i.e., SR,
SU, and OBR) and behavior-oriented rules are bolded (LA and NL).

A check of second order treatment pair impacts (without concern for higher order pair-

ings), as shown in Table 4, reveals stark contrasts for single treatment adjustments within
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pairs (i.e. the interaction effects). To begin, the average price deviation within SU markets

is shown to have been largely weighed down by those which also employed an angle choice

process (LA=1), implying the combination of a set step size and a price choice distribution

heavily skewed to favor lower prices (and thus closer to the equilibrium price) greatly abates

the pattern of large price deviations seen in non-angle-choice SU markets. A similar story

can be seen with buyer and seller MRS in SU markets. Pairing the distance restriction that

is SU with a choice restriction on prices provides significant guidance for the ZI traders.

Within SU markets, those with LA=1 entirely reverse and even improve the negative impact

SU has on MRS spreads. In fact, pairing SU with either of the behaviorally-oriented rules

(LA and NL) improves any measure associated with allocations.21 The mirror to these ad-

justments show similar trends as well, with LA markets finding SU and NL pairings making

up most of the benefit found in LA estimates from Table 3. In fact, LA market impacts on

efficiency relative to non-LA markets reverse in some cases when accounting for interaction

effects. Perhaps the most striking pairing is LA:NL, reporting 0.27 and nearly 0.3 unit im-

provements in allocative and distance efficiency respectively. The spread between aggregate

agent MRS’s reduces as seller (buyer) MRS rises (falls) significantly, indicating final market

allocations closer to the equilibrium path and final CE bundle.

More generally, within treatment types as defined by a single rule, splitting the markets

by a rule of a different type (i.e. splitting markets that are characterized by a market-

oriented rule by a behaviorally-oriented rule) shows far better performance in those with

both rules enforced as opposed to one. This is less true for pairings of the same type (e.g.

LA:NL or SU:OBR). A finer look into the different treatments (looking at the full five factor

combination) can be found in Appendix A.

21Pairing NL with SU, on average, proves to be a detriment to price estimates when not
further parsing the markets into smaller treatment groups. Comparatively, the pairing with
LA proves to be more beneficial in the allocation measures, despite both pairings yielding
positive changes.
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4.2 A Further Look at Prices and Efficiencies

Figure 6: Bivariate densities over average price and allocative efficiency. Densities are sep-
arated based on inclusion or exclusion of each rule. The upper horizontal dotted line shows
the allocative efficiency of the 1:1:1:1:1 markets; the lower horizontal dotted line shows the
allocative efficiency of the 0:0:0:0:0 markets; the vertical dotted line shows the competitive
equilibrium price at endowment.

Figure 6 presents bivariate densities over allocative efficiency and round-average price

for each rule switch.22 A few trends appear upon inspection. Firstly, the density shape

and location match remarkably closely within rule type (with the top row showing market

rules and the bottom showing behavioral rules). Secondly, within market rules, only SU

reveals stark differences in distributional shape, with the allocative efficiency axis providing

the majority of the transformation. The behavioral rules, however, both show markedly

large reductions in distributional footprint. Both NL and LA show condensed supports on

both axes, of approximately the same size. Thirdly, only NL and LA reflect the ability
22Appendix G reports similar distributions with per-unit averages replacing average trade

price. For both Figure 6 and 7, outliers with round-average price over 50 (roughly top 0.7%)
are omitted.
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to fit (almost) entirely within the bounds of the two main ZI model’s efficiency estimates

and stay relatively close to the equilibrium price throughout the density. Clearly, on their

own, enforcement of the behavioral rules proves particularly heavy-handed in the guidance

of market performance.

Figure 7: Time series of binned averages at the one ’second’ level. Averages are taken at each
second marker over the 3000 rounds in each treatment. Then, these are averaged at each
second marker across within the half of the treatments that satisfy Rule=0 or Rule=1. The
dotted line shows Rule=1 binned averages and the solid line shows Rule=0 binned averages.

To target prices more directly, without reference to efficiency, Figure 7 reports binned

averages for trade price over time within period.23 By definition, the floors of each of the

time series plotted reveal a slope of zero, as no learning takes place in ZI markets. Volatility

in trade price and the level of the trend’s floor may vary however, and indeed do so in the

figure. Much like Figure 6, SR and OBR report little of interest. Both show matching floors

(well above CE price, but equivalent regardless of rule indicator value), though OBR markets

23All periods within a run where treated equally and without regard for order as no
information is carried over between periods and ZI agents do not have the capacity to learn
across rounds (in any treatment included in this study).
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do show far more price variation than non-OBR markets. SU markets show stabler binned

averages than non-SU markets, but much further from the CE price. Behaviorally-oriented

rules show similar floor levels to each other, with Rule=1 markets have a floor far closer

to the CE price. Where NL and LA deviate is in price variation, with NL=0 and LA=1

markets revealing higher volatility and NL=1 and LA=0 markets appearing more stable.

4.3 Convergence

In Gode and Sunder (1993) and Gode et al. (2004), market performance is largely discussed

in a descriptive manner, focusing on round-end measures of allocative efficiency and average

price. While these markers are important in evaluating performance in a snapshot, providing

a sense of distance from theoretical predictions, some confirmation or sense of stability around

these estimates should be investigated as well.

It is true that the model makes no claims about information, or behavior, transferring

from round to round, so across-round measures of convergence are of no use (nor should

they be as this is not the purpose of the models).24 However, within-period convergence

is certainly of interest, at least in markets where behavioral rules are enforced. Without

a no-loss rule or angle-choice process, traders are essentially trading at any and all prices

in R+ just at varying speeds, either in regard to time (SR and OBR) or in volume (SU).

Given the strong distributional influences of an angle-process on price, some consistency in

average price is expected, though convergence (or reduction in average deviation from said

price across time) is less immediately clear.

Table 9 provides some insight into the price convergence (or lack thereof) in zero intelli-

gence markets. With respect to prices, Table 9 examines estimates and counts of reductions

in five-trade price deviations, or the rolling sum of deviations in trade price from CE price for

a five trade moving window. First, Aw provides a snapshot of the start-versus-end-of-round
24As mentioned in Section 4.2, the lack of an upward or downward trend in binned average

prices confirms this.
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Within-round Price Convergence.
None Enforced Only Market Only Behavioral All Enforced

Aw -0.09 -0.01 0.48 0.54
(0.76) (0.41) (0.30) (0.19)

Constant 1.9 4.18 1.7 1.86
(0.53) (0.33) (0.43) (0.31)

Beta -0.04 -0.02 -0.26 -0.31
(0.26) (0.14) (0.18) (0.16)

P 0.23 0.27 0.08 0.06
(0.29) (0.0) (0.19) (0.17)

A [Min, Max] [-9.67, 0.99] [-3.39, 0.78] [-2.92, 0.98] [-0.84, 0.95]
# A>0.5 493 172 1734 1937
# Beta<0*** 471 439 2026 2165
Observations 3000 3000 3000 3000

Table 9: Average estimates and counts for within-round price convergence. Aw is 1 minus the
sum of price deviations from CE in the final 5 trades divided by the sum of deviations from CE
in the first 5 trades of a round. Constant, Beta and P are from regressing log(

∑t+4
t (pt−pCE))

on log(time in round). The final two rows show counts for number of rounds with Aw > 0.5
and number of rounds with a coefficient estimate that is statistically significantly negative.
All estimates asides from the counts are means at the round level. () report standard
deviations.

price deviation improvement (or lack thereof); Aw is defined as one minus the five-trade

price deviation sum in the first five trades divided by the same statistic for the final five

trades of a round.25 As such, values are bounded above by 1 (assuming deviations exist

in the first five trades), with 1 implying full convergence, 0 implying no improvement and

negative values implying divergent price tendencies. For both ‘None Enforced’ and ’Only

Market’ rule-combination markets, Aw estimates are negative on average implying a lack

of convergence. Markets with ‘Only Behavioral’ or ‘All Enforced’ rule-combinations report

price deviations at the end of market rounds that are roughly half as large as those at the

start of the round. The ranges for Aw shed light on how extreme some of the divergent

trends can be, while markets enforcing behavioral rules (and especially all rules) show much

tighter distributions of estimates that are have more mass towards the convergent values

(i.e. 1). Stronger examples of convergence (such as values above 0.5) are far more common

25This statistic is borrowed from Gjerstad (2013).
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in markets enforcing behavioral rules as well. Moving from ‘None Enforced’ to ‘Only Behav-

ioral’ or ‘Only Market’ to ‘All Enforce’ suggests increasing trader intelligence while holding

market rule enforcement constant results in an improvement in average Aw of just under 0.6

and a reduction in the lower bound of the Aw range to roughly a third of its magnitude with

no behavioral rules enforced.

The other half of Table 9 reports average regression outcomes when regression the loga-

rithm of five-trade rolling sums of price deviation from CE on the logarithm of time in market

round. Convergent trends are associated with negative beta values. Average betas are more

clearly negative in behavioral-rule-enforcing markets than those enforcing only market rules

or no rules at all. Over two thirds of markets with either all rules enforce or only behavioral

rules enforced have a negative beta significant at the 0.01 level, while less than one sixth of

the markets with no rules or only market rules satisfy the same condition. As with the pre-

vious analysis, convergence metrics indicate that the behavioral rules seem to impart more

than zero intelligence to the traders; or, in other words, zero intelligence again appears to

not be enough.

4.4 Experimental Applications

Zero intelligence simulations have frequently provided a benchmark for laboratory market

outcomes. As portrayed by the simulation exercise in this paper, however, using the ZI

framework ‘as-is’ may not provide a reasonable comparison. Instead, this paper suggests the

rules governing the simulation environment should match that of the experiment.

For example, an experiment which enforces a spread reduction rule and single unit, but

allows long-lived orderbooks, should consider using SR:SU and SR:SU:NL simulations as

benchmarks for an institutional lower bound and a marker for utility-improving random play,

respectively. Note, however, that an angle choice rule is not recommended for benchmarking,

as (1) the choice process is unnatural in terms of real-world trading, and (2) the process is
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highly sensitive to parametrization, especially as the equilibrium price rises away from 1.

Gjerstad (2013) SR:SU SR:SU:NL SR:NL

Allocative Efficiency.
Mean 0.94 0.86 0.94 0.91

First Period S.D. 0.02 0.08 0.06 0.05
[Min, Max] [0.90, 0.97] [0.63, 0.98] [0.61, 1.00] [0.70, 0.99]

Mean 0.98 0.87 0.94 0.91
All Periods S.D. 0.02 0.07 0.06 0.05

[Min, Max] [0.90, 1.00] [0.55, 0.99] [0.61, 1.00] [0.64, 1.00]

Price & MRS.
Average Price 93.05 (35.85) 1250.30 (190.20) 993.65 (218.25) 85.76 (23.39)

First Period Buyer MRS 102.59 (23.92) 411.06 (419.00) 259.92 (175.01) 68.15 (40.83)
Seller MRS 83.04 (27.40) 191.46 (51.54) 205.00 (28.49) 158.53 (89.09)

Average Price 94.31 (22.80) 1258.43 (188.67) 984.15 (216.84) 86.61 (24.18)
All Periods Buyer MRS 115.37 (33.04) 405.60 (460.05) 260.61 (156.48) 72.13 (60.22)

Seller MRS 77.13 (20.76) 195.40 (52.80) 203.82 (27.68) 158.45 (93.55)

Table 10: Gjerstad (2013) allocative efficiency outcomes compared to ZI benchmarks in the
upper panel. Outcomes are at the round level, with 96 rounds across 7 sessions comprising
the full data set. Each of the ZI settings were simulated 250 runs with 12 periods per run.
In the lower panel, price outcomes are reported, with () denoting standard errors.

Gjerstad (2013) presents an example of an experimental market run with SR and SU

rules enforced26; the simulated allocative efficiency benchmarks for ZI markets of the same

parametrization would be 0.94 and 0.87 with and without a no-loss constraint enforced, as

shown in Table 10. Regarding allocative efficiency, the human subject markets outperform

both ZI benchmarks, with all 96 rounds reporting estimates above 0.87 and only three falling

below 0.94.27 Estimates for the first periods of the human sessions seem more in line with

the SR:SU:NL estimates, though only two of the first rounds still fall below the ZI mean.

Appendix H.3 presents an expanded example for the experiments from Gjerstad (2013), with

26In the experimental CDA run in Gjerstad (2013), all orders are restricted to having a
quantity of 1, and a spread reduction rule is enforced in all sessions/periods (see section 3
of Gjerstad (2013), pages 468-469, to find the full CDA structure used, as well as mention
of both rules above).

27As mentioned earlier, when run for exceptionally long run-times, NL market efficiencies
will tend to 1, with a lower bound in the limit being that of the lowest efficiency allocation
along the contract curve within the starting lens. Thus, the human markets finishing so
high relative to moderate-length runs, and comparable to exceptionally long runs, suggests
the subjects’ learning process in both price and allocations outpaced random orders which
follow IR.

34



tables matching Table H.4 for 100 simulations of with Gjerstad’s parametrization, as well

as with a normalized version of said parametrizations which adjusts the CE price to near 1

(see Table H.5). As can be seen in these tables as well as Table 10, prices and allocation

paths can be sensitive to the experiment’s parametrization. The combination of the corner

endowment28, large scaling difference between the two goods (100 times more units of Y than

X) and preference parametrization of Gjerstad (2013) make for a clear example of both the

sensitivity that can exist and the difference in intelligence between human subject’s learning

processes and zero intelligence agents. The final column depicts a setting which performs

much closer to the experimental data in terms of price, namely SR:NL; by removing the

single unit restriction prices are able to get closer to the CE price of 91, though at the cost

of moving away from the data slightly in terms of allocative efficiency. Additionally, stark

differences in the performance with and without an angle-choice process in Tables H.4 and

H.5, especially in prices, portray how using such a choice process for benchmarking may be

misleading.

Rule-matched simulations can also provide a more proactive benefit in the experimental

design stage, as parametrizations can be tested for various desired characteristics. These

could range from width or shape of size of the starting lens, different starting endowments,

or even scenarios with multiple equilibria. Adjusting each of these features would change

simulated behavior and hence inform researchers on trends (in terms of lower bounds) such

as ease or speed of convergence, variation in anticipated allocative efficiency or buyer versus

seller adjustment and surplus. Additionally, other rules that experimenters may be interested

in that are not included in this paper may be easily incorporated into the simulation process;

for example, imposing spread reduction at the trader level29 or using alternative order-time

orderings (e.g. frequent batching). In any application of this model in this manner, however,

28With the preferences used in Gjerstad (2013), this endowment means essentially the
entire contract curve is within the starting lens, implying that even in NL settings, early
trade can be highly volatile.

29This would mean a trader only replaces their existing order if their new order is at a
better price, but at a price that may not be the best overall of that order type.
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the simulations should be taken as a lower bound, as certain outcomes can be sensitive

to the potential design choices discussed above. If the experimenter’s intent is to instead

predict laboratory behavior, a minimal-intelligence model (as opposed to zero-intelligence)

or a version of this model with even more market and/or behavioral rules may be more

appropriate.

5 Conclusion

Understanding both the implications of the rules implied by a market institution and the

underlying behavior defining trader actions in said market are crucial tasks in economic

research. The main issue plaguing such an endeavor is the entanglement between the two.

One way to isolate the first study is to place traders with no strategic behavior in the market,

so as to let market outcomes be only guided by the rules of the institution. Gode and Sunder

(1993) proposed such a model and test in a partial equilibrium setting, and then brought

the model to a general equilibrium setting via the Edgeworth box (Gode et al., 2004). The

proposed zero intelligence traders, however, either abode by potentially influential behavioral

assumptions (such as a no-loss constraint, or an order choice process giving more weight to

less aggressive prices), or participated in markets with rules that may guide the allocation

path. This paper (1) summarizes and provides adjustments to the key assumptions of ZI-GE,

and (2) conducts a test of the assumptions made in this model and those aforementioned.

I test the major assumptions made in ZI models, as well as those made in the models’

respective CDA markets, via a novel, expansive simulation procedure. All combinations

of the five rule variants either relaxed or enforced are simulated with traders from this

paper’s model. Each variation was simulated 250 times with each run containing 3600

entries, yielding a data set of 28.8 million market entries and order placements across 96,000

trading periods in 8000 simulated markets. First differences show an improvement across

the board when imposing one of the five rules, as well as a reorganization of gains from trade
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resulting in systematic improvements in distance efficiency. An interactions model reports

the incremental impact of these assumptions in the full factorial design.

Estimates for key price and allocation outcomes suggest that ‘zero intelligence’ is indeed

not enough, with behavioral assumptions providing considerable guidance to market conver-

gence and performance. Allocative and distance efficiencies are 0.26 and 0.40 units lower

than those found in ZI-GE, while average price is slightly (though insignificantly) closer to

CE and price volatility is twice as large in the least restricted version of the model. When

paired with another assumption prone to price funneling, both spread reduction and no-loss

rules provide large improvements in market performance. Interestingly, markets with either

{pairs of enforced rules} or {at most one relaxed assumption} exhibit the most equilibrating

tendencies. Markets in which traders’ order choice behavior is dictated by an angle-choice

process or a no-loss tendency benefit immensely in market performance from the added

intelligence.

In addition, this paper offers a customizable testbed for establishing lower-bound bench-

marks for markets in the laboratory. Matching rules in the simulations and experiments

is advised when used for the purposes of benchmarking elicited data or testing various

parametrizations. In either regard, using the lattice choice rule is advised as reallocation,

and thus price choice, is less intelligent and perhaps more intuitive.
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Appendix A Descriptive Continued

Outcome:

SR SU LA OBR NL Price Per-Unit Avg. |Price− CE| RMSE Order Size # Trades Trade Size Seller MRS Buyer MRS Alloc. Eff. Dist. Eff.
0 0 0 0 0 2.3 (1.74) 1.67 (0.38) 1.46 (1.69) 2.00 (5.09) 14.96 (1.02) 18.05 (4.66) 3.51 (0.74) 2.02 (0.46) 3.08 (0.56) 0.65 (0.17) 0.33 (0.13)

0 0 0 0 1 {2.42} (0.63) 2.38 (0.60) 0.64 (0.37) 0.70 (0.39) 15.30 (0.88) 2.02 (1.17) 3.49 (1.39) 1.32 (0.28) 4.37 (0.67) 0.35 (0.19) 0.26 (0.15)

0 0 0 1 0 3.76 (14.52) 1.78 (0.48) 2.91 (14.52) 6.72 (62.77) 14.78 (1.00) 13.88 (3.33) 3.75 (0.89) 1.97 (0.42) 3.12 (0.54) 0.68 (0.16) 0.33 (0.13)

0 0 0 1 1 {2.42} (0.65) {2.39} (0.62) 0.64 (0.38) 0.69 (0.40) 15.34 (0.89) 1.77 (0.95) 3.65 (1.48) 1.28 (0.26) 4.45 (0.65) [0.34] (0.18) 0.25 (0.14)

0 0 1 0 0 1.55 (0.73) 1.11 (0.13) 1.58 (0.70) 3.08 (7.78) 40.28 (343.31) 139.22 (9.47) 2.25 (0.22) 2.09 (0.57) 3.08 (0.61) 0.67 (0.18) 0.15 (0.16)

0 0 1 0 1 1.99 (0.16) 1.88 (0.15) 0.65 (0.10) 0.77 (0.11) 5.76 (0.59) 30.34 (4.58) 0.50 (0.08) 1.71 (0.11) 3.40 (0.17) 0.83 (0.05) 0.60 (0.06)

0 0 1 1 0 9.04 (179.29) 1.3 (0.21) 9.06 (179.29) 60.04 (1563.85) 29.66 (95.99) 78.71 (5.93) 2.13 (0.27) 2.05 (0.47) 3.03 (0.51) 0.74 (0.14) 0.15 (0.15)

0 0 1 1 1 1.96 (0.18) 1.84 (0.17) 0.80 (0.11) 0.93 (0.12) 5.79 (0.59) 24.70 (3.48) 0.53 (0.10) 1.57 (0.11) 3.64 (0.19) 0.76 (0.06) 0.52 (0.06)

0 1 0 0 0 15.25 (1.58) 15.25 (1.58) 12.81 (1.58) 14.18 (1.74) 1.00 (0.00) 27.04 (4.43) 1.00 (0.00) 1.77 (0.24) 3.70 (0.69) 0.64 (0.17) 0.24 (0.09)

0 1 0 0 1 4.06 (0.47) 4.06 (0.47) 1.66 (0.43) 1.77 (0.39) 1.00 (0.00) 3.90 (1.56) 1.00 (0.00) 1.23 (0.15) 4.77 (0.41) 0.42 (0.14) 0.24 (0.09)

0 1 0 1 0 14.99 (1.80) 14.99 (1.80) 12.62 (1.78) 14.54 (2.05) 1.00 (0.00) 23.61 (3.91) 1.00 (0.00) 1.78 (0.24) 3.67 (0.69) 0.65 (0.17) 0.24 (0.09)

0 1 0 1 1 4.04 (0.49) 4.04 (0.49) 1.66 (0.43) 1.78 (0.39) 1.00 (0.00) 3.81 (1.51) 1.00 (0.00) [1.22] (0.15) [4.80] (0.39) 0.42 (0.14) 0.23 (0.09)

0 1 1 0 0 1.27 (0.23) 1.27 (0.23) 1.54 (0.12) 1.77 (0.26) 1.00 (0.00) 84.3 (5.39) 1.00 (0.00) 1.96 (0.22) 3.04 (0.22) 0.87 (0.06) 0.53 (0.08)

0 1 1 0 1 1.93 (0.20) 1.93 (0.20) 0.72 (0.11) 0.84 (0.12) 1.00 (0.00) 18.43 (1.84) 1.00 (0.00) 1.96 (0.13) 3.05 (0.17) 0.91 (0.04) 0.71 (0.06)

0 1 1 1 0 1.68 (0.29) 1.68 (0.29) 1.85 (0.21) 2.44 (0.53) 1.00 (0.00) 63.91 (4.74) 1.00 (0.00) 1.95 (0.23) 3.05 (0.29) 0.84 (0.08) 0.50 (0.09)

0 1 1 1 1 2.00 (0.20) 2.00 (0.20) 0.77 (0.11) 0.90 (0.13) 1.00 (0.00) 17.46 (1.71) 1.00 (0.00) 1.91 (0.13) 3.11 (0.18) 0.90 (0.04) 0.69 (0.06)

1 0 0 0 0 2.00 (2.26) 1.63 (0.30) 1.19 (2.23) 1.78 (10.29) 8.94 (1.42) 24.38 (4.83) 3.26 (0.56) 2.05 (0.45) 3.04 (0.54) 0.66 (0.16) 0.36 (0.13)

1 0 0 0 1 2.29 (0.31) 2.26 (0.30) {0.46} (0.20) {0.53} (0.23) 9.66 (2.36) 4.72 (1.52) 3.18 (0.83) 1.80 (0.35) 3.37 (0.60) 0.63 (0.15) 0.48 (0.13)

1 0 0 1 0 3.78 (10.43) 1.85 (0.43) 2.84 (10.40) 7.11 (45.10) 11.79 (1.23) 16.17 (3.16) 3.73 (0.80) 2.03 (0.40) 3.04 (0.49) 0.71 (0.15) 0.36 (0.13)

1 0 0 1 1 2.33 (0.36) 2.28 (0.34) 0.52 (0.22) 0.60 (0.25) 11.29 (1.87) 3.31 (0.95) 3.77 (1.09) 1.63 (0.31) 3.66 (0.58) 0.61 (0.16) 0.46 (0.14)

1 0 1 0 0 3.17 (38.28) 1.15 (0.15) 3.24 (38.28) 18.95 (425.89) 10.04 (49.81) 127.29 (8.29) 2.19 (0.22) {2.10} (0.55) 3.07 (0.72) 0.67 (0.18) [0.12] (0.17)

1 0 1 0 1 2.05 (0.15) 1.93 (0.15) 0.61 (0.11) 0.74 (0.12) 1.81 (0.58) 35.38 (4.51) 0.46 (0.07) 1.82 (0.10 3.23 (0.14) 0.87 (0.04) 0.65 (0.05)

1 0 1 1 0 7.33 (36.23) 1.34 (0.23) 7.33 (36.22) [42.16] (314.01) 21.27 (53.84) 74.31 (5.23) 2.1 (0.28) 2.06 (0.45) 3.02 (0.49) 0.75 (0.13) 0.16 (0.15)

1 0 1 1 1 1.94 (0.17) 1.83 (0.17) 0.83 (0.11) 0.96 (0.12) 4.01 (0.71) 26.64 (3.27) 0.50 (0.09) 1.60 (0.11) 3.59 (0.18) 0.78 (0.06) 0.53 (0.06)

1 1 0 0 0 15.31 (1.52) 15.31 (1.52) 12.89 (1.52) 14.19 (1.58) 1.00 (0.00) 29.83 (4.39) 1.00 (0.00) 1.80 (0.23) 3.62 (0.69) 0.66 (0.17) 0.24 (0.08)

1 1 0 0 1 4.63 (0.37) 4.63 (0.37) 2.21 (0.34) 2.27 (0.29) 1.00 (0.00) 4.51 (1.53) 1.00 (0.00) 1.34 (0.15) 4.54 (0.39) 0.52 (0.14) 0.30 (0.09)

1 1 0 1 0 [15.41] (1.81) [15.41] (1.81) [13.06] (1.79) 15.13 (2.05) 1.00 (0.00) 26.03 (3.78) 1.00 (0.00) 1.78 (0.24) 3.65 (0.71) 0.65 (0.17) 0.24 (0.09)

1 1 0 1 1 4.52 (0.41) 4.52 (0.41) 2.11 (0.36) 2.21 (0.30) 1.00 (0.00) 4.41 (1.55) 1.00 (0.00) 1.32 (0.15) 4.58 (0.40) 0.50 (0.14) 0.29 (0.09)

1 1 1 0 0 1.43 (0.26) 1.43 (0.26) 1.67 (0.16) 2.06 (0.40) 1.00 (0.00) 78.4 (5.00) 1.00 (0.00) 1.97 (0.21) 3.02 (0.24) 0.87 (0.06) 0.52 (0.09)

1 1 1 0 1 1.91 (0.20) 1.91 (0.20) 0.73 (0.12) 0.85 (0.13) 1.00 (0.00) 19.89 (1.75) 1.00 (0.00) 2.05 (0.13) {2.93} (0.15) {0.94} (0.03) {0.75} (0.06)

1 1 1 1 0 1.74 (0.30) 1.74 (0.30) 1.91 (0.22) 2.55 (0.56) 1.00 (0.00) 65.09 (4.62) 1.00 (0.00) 1.97 (0.22) 3.02 (0.29) 0.85 (0.07) 0.49 (0.10)

1 1 1 1 1 1.99 (0.20) 1.99 (0.20) 0.77 (0.11) 0.91 (0.12) 1.00 (0.00) 18.85 (1.62) 1.00 (0.00) 2.00 (0.12) 2.99 (0.16) 0.92 (0.03) 0.73 (0.06)

Table A.1: Outcome averages by treatment. Observations are at the round-average or round-
end level. The left panel shows the assumptions enforced. {Bolded} estimates are the ‘best’
in the column, while [bolded] are the ‘worst’.
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Appendix B Step-size Variation

Only step-size All Constraints
r=0.1 r=0.75 r=1 r=1.5 r=0.1 r=0.75 r=1 r=1.5

Per-Unit Avg. Price 0.46 0.45 0.45 0.47 1.6 1.73 1.76 1.81
(0.05) (0.06) (0.06) (0.06) (0.13) (0.14) (0.14) (0.15)

# Trades 147.67 146.55 147.25 148.71 41.09 31.4 28.83 24.9
(10.11) (10.33) (10.42) (10.14) (4.16) (3.03) (2.75) (2.3)

Seller MRS 0.88 1.48 1.64 1.84 0.87 1.33 1.46 1.67
(0.01) (0.12) (0.16) (0.25) (0.01) (0.06) (0.07) (0.09)

Buyer MRS 5.08 3.39 3.22 3.09 5.55 4.11 3.84 3.46
(0.08) (0.14) (0.14) (0.16) (0.04) (0.13) (0.14) (0.15)

Allocative Eff. 0.23 0.78 0.83 0.86 0.14 0.62 0.71 0.82
(0.02) (0.05) (0.05) (0.05) (0.01) (0.05) (0.05) (0.04)

Distance Eff. 0.12 0.39 0.38 0.35 0.07 0.38 0.46 0.58
(0.01) (0.03) (0.04) (0.05) (0.01) (0.04) (0.04) (0.05)

Table B.1: Round-average estimates for markets with different step-sizes (r). Left panel
shows estimates where only enforced constraint is step-size, while right panel enforces all
five constraints.

Appendix C Lattice draw vs. Radian draw

This appendix is meant to clarify differences in the reallocation likelihoods and price like-

lihoods associated with a uniform draw over feasible reallocations (i.e. new (x, y) bundles)

and an angle-based price-choice process. In both cases, no restriction over quantities are

considered to allow a visualization and assessment over the entire feasible reallocation space.

I show simulated draws over ask orders, a similar exercise over bids would show comparable

results.

Figure C.1 compares simulated draws using both processes when no no-loss constraint is

imposed. Each plot shows 10,000 order draws, plotting each (potential) reallocation point, a

binned joint density map and marginal densities over each good. Clearly, the left plot shows
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uniformity across the full space while the right plot shows peaked y draws near the current

allocation’s holdings of y. The combination of a radian draw, with a uniform distribution

along vectors moving outwards from the current allocation yields a sample closer to the

allocation and lower in price.

Figure C.1: Left: Uniform random draws of new (x, y) bundles. Right: Uniform draws
over radians from [0, π/2] paired with random quantity draws along the drawn price vector.
In both plots, 10000 simulated order reallocations are show. Each dot represents an order,
the map depicts the joint density while the curves on the borders are marginal densities.

Figure C.2 recreates this simulation exercise with a no-loss constraint enforced. Again

the left plot shows a a uniform distribution over the feasible reallocations. The right plot

now heavily favors reallocations closer to the trader’s indifference curve. While this may

seem harmful to the trader’s strategy, it is actually beneficial for crossing orders. Given the

set of prices that traders may trade at under a no-loss constraint is bounded by the set of

traders’ marginal rates of substitution, maintaining an order strategy that keeps prices close

to a trader’s marginal rate of substitution gives them a better shot at both crossing existing

orders and placing orders with a prices other traders may like. As such, the uniform draw

over reallocations can be though of as simpler, or of lower intelligence.
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Figure C.2: Left: Uniform random draws of new (x, y) bundles that are utility-improving.
Right: Uniform draws over radians from [0, π/2] paired with random quantity draws along
the drawn price vector that are utility-improving. In both plots, 10000 simulated order
reallocations are show. Each dot represents an order, the map depicts the joint density while
the curves on the borders are marginal densities.

Appendix D Regression Table Continued

Dependent variable:

Price Per-Unit Avg. |Price− CE| RMSE Order Size # Trades Trade Size Seller MRS Buyer MRS Alloc. Eff.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Spread Red (SR) −0.307 −0.048∗∗∗ −0.266 −0.215 −6.021∗∗∗ 6.332∗∗∗ −0.245∗∗∗ 0.030∗∗∗ −0.041∗∗∗ 0.011∗∗∗
(0.859) (0.017) (0.859) (7.565) (1.661) (0.107) (0.013) (0.008) (0.012) (0.003)

Single Unit (SU) 12.946∗∗∗ 13.574∗∗∗ 11.356∗∗∗ 12.182 −13.964∗∗∗ 8.986∗∗∗ −2.508∗∗∗ −0.248∗∗∗ 0.621∗∗∗ −0.005
(0.859) (0.017) (0.859) (7.565) (1.661) (0.107) (0.013) (0.008) (0.012) (0.003)

Lattice/Angle (LA) −0.753 −0.562∗∗∗ 0.124 1.088 25.318∗∗∗ 121.174∗∗∗ −1.259∗∗∗ 0.065∗∗∗ −0.001 0.020∗∗∗
(0.859) (0.017) (0.859) (7.565) (1.661) (0.107) (0.013) (0.008) (0.012) (0.003)

OB Reset (OBR) 1.453∗ 0.107∗∗∗ 1.449∗ 4.723 −0.180 −4.175∗∗∗ 0.243∗∗∗ −0.051∗∗∗ 0.042∗∗∗ 0.031∗∗∗
(0.859) (0.017) (0.859) (7.565) (1.661) (0.107) (0.013) (0.008) (0.012) (0.003)

No Loss (NL) 0.120 0.709∗∗∗ −0.816 −1.300 0.333 −16.027∗∗∗ −0.017 −0.705∗∗∗ 1.284∗∗∗ −0.297∗∗∗
(0.878) (0.018) (0.878) (7.728) (1.661) (0.107) (0.013) (0.008) (0.012) (0.003)

...
Constant 2.302∗∗∗ 1.674∗∗∗ 1.457∗∗ 1.996 14.964∗∗∗ 18.050∗∗∗ 3.508∗∗∗ 2.020∗∗∗ 3.081∗∗∗ 0.648∗∗∗

(0.608) (0.012) (0.608) (5.349) (1.175) (0.075) (0.009) (0.005) (0.009) (0.002)

Observations 95,473 95,473 95,473 95,473 96,000 96,000 95,473 95,469 95,473 96,000
Adjusted R2 0.017 0.978 0.014 0.002 0.020 0.986 0.834 0.467 0.601 0.608

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table D.1: Interaction regression results. First order effects are reported here, the rest are
in tables to follow.
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Tables D.1-D.3 present the treatment analysis of the full factorial design. Each of the five

assumptions/rules being tested is given an indicator, I(rule), with a value of 1 representing

the presence of the constraint in the simulations. The estimation process is represented the

following interaction design:

Yi = α+
∑

i∈Rules

βiI(i = 1)+
∑

i∈Rules

∑
j∈Rules/{i}

βijI(i = 1)I(j = 1)+ · · ·+ βijklm
∏

i∈Rules

I(i = 1) (6)

The main effects of the model, i.e. first summation from (6), is provided in Table D.1.

Relative to Table 3, price estimates flip in sign with magnitudes falling for behavioral rules

and increasing for market rules. MRS and allocative efficiency estimates are small in size

with the exception of SU-only markets in MRS estimates and NL-only markets in both.

Moving to Table D.2, allocation adjustments seem to be the main beneficiary of imposing

a second assumption. All significant estimates for seller MRS being positive, paired with

all-but-one significant estimates being negative implies convergence in allocation space. A

few act as recoveries, with the damage of orderbook resetting, the no-loss constraint and

single unit orders being reclaimed by inclusions of a second constraint. Angle choice and

spread reduction restrictions are especially effective in progressing NL markets to a more

successful final allocation. Similarly, the vast majority of interactions reflect in an increase

in efficiency. Larger improvements are reflective of reversals for NL markets mostly, while

smaller improvements are most often continuations of efficiency gain in SR and LA markets.

Table D.3, which reports the quinary interaction, provides an interesting connection to

the literature. As the GSS model (with single unit instead of single step orders/trades) en-

forces all five assumptions, flipping the signs in Table D.3 allows the coefficients to represent

the average impact of relaxing a single assumption in the model. A slight tightening (∼0.17

reduction) of the MRS spread represents a small positive effect of assumption relaxation,

while reductions in per-unit average price and trade count present potentially negative im-

pacts. As Table 3 will show however, individual comparisons reveal relaxing the angle choice
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Dependent variable:

Price Per-Unit Avg. |Price− CE| RMSE Order Size # Trades Trade Size Seller MRS Buyer MRS Alloc. Eff.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
...
SR:SU 0.365 0.107∗∗∗ 0.346 0.222 6.021∗∗ −3.540∗∗∗ 0.245∗∗∗ −0.003 −0.041∗∗ 0.006

(1.215) (0.024) (1.215) (10.698) (2.349) (0.151) (0.019) (0.011) (0.017) (0.005)

SR:LA 1.923 0.081∗∗∗ 1.929 16.084 −24.220∗∗∗ −18.269∗∗∗ 0.183∗∗∗ −0.015 0.035∗∗ −0.009∗
(1.215) (0.024) (1.215) (10.698) (2.349) (0.151) (0.019) (0.011) (0.017) (0.005)

SR:OBR 0.331 0.119∗∗∗ 0.204 0.608 3.031 −4.038∗∗∗ 0.228∗∗∗ 0.027∗∗ −0.044∗∗ 0.019∗∗∗
(1.215) (0.024) (1.215) (10.698) (2.349) (0.151) (0.019) (0.011) (0.017) (0.005)

SR:NL 0.171 −0.078∗∗∗ 0.082 0.047 0.381 −3.640∗∗∗ −0.068∗∗∗ 0.452∗∗∗ −0.950∗∗∗ 0.271∗∗∗
(1.229) (0.025) (1.229) (10.815) (2.349) (0.151) (0.019) (0.011) (0.017) (0.005)

SU:LA −13.226∗∗∗ −13.417∗∗∗ −11.400∗∗∗ −13.495 −25.318∗∗∗ −63.908∗∗∗ 1.259∗∗∗ 0.119∗∗∗ −0.665∗∗∗ 0.204∗∗∗
(1.215) (0.024) (1.215) (10.698) (2.349) (0.151) (0.019) (0.011) (0.017) (0.005)

SU:OBR −1.714 −0.368∗∗∗ −1.642 −4.361 0.180 0.747∗∗∗ −0.243∗∗∗ 0.056∗∗∗ −0.078∗∗∗ −0.028∗∗∗
(1.215) (0.024) (1.215) (10.698) (2.349) (0.151) (0.019) (0.011) (0.017) (0.005)

SU:NL −11.307∗∗∗ −11.896∗∗∗ −10.342∗∗∗ −11.105 −0.333 −7.105∗∗∗ 0.017 0.162∗∗∗ −0.212∗∗∗ 0.079∗∗∗
(1.230) (0.025) (1.230) (10.823) (2.349) (0.151) (0.019) (0.011) (0.017) (0.005)

LA:OBR 6.041∗∗∗ 0.080∗∗∗ 6.025∗∗∗ 52.232∗∗∗ −10.445∗∗∗ −56.339∗∗∗ −0.365∗∗∗ 0.011 −0.092∗∗∗ 0.039∗∗∗
(1.215) (0.024) (1.215) (10.698) (2.349) (0.151) (0.019) (0.011) (0.017) (0.005)

LA:NL 0.318 0.060∗∗ −0.110 −1.013 −34.859∗∗∗ −92.859∗∗∗ −1.735∗∗∗ 0.334∗∗∗ −0.969∗∗∗ 0.461∗∗∗
(1.229) (0.025) (1.229) (10.814) (2.349) (0.151) (0.019) (0.011) (0.017) (0.005)

OBR:NL −1.456 −0.103∗∗∗ −1.450 −4.729 0.224 3.924∗∗∗ −0.086∗∗∗ 0.013 0.047∗∗∗ −0.044∗∗∗
(1.241) (0.025) (1.241) (10.925) (2.349) (0.151) (0.019) (0.011) (0.018) (0.005)

...
Constant 2.302∗∗∗ 1.674∗∗∗ 1.457∗∗ 1.996 14.964∗∗∗ 18.050∗∗∗ 3.508∗∗∗ 2.020∗∗∗ 3.081∗∗∗ 0.648∗∗∗

(0.608) (0.012) (0.608) (5.349) (1.175) (0.075) (0.009) (0.005) (0.009) (0.002)

Observations 95,473 95,473 95,473 95,473 96,000 96,000 95,473 95,469 95,473 96,000
Adjusted R2 0.017 0.978 0.014 0.002 0.020 0.986 0.834 0.467 0.601 0.608

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table D.2: Interaction regression results for second order interactions. This is a continuation
of the regression estimates in Table 2.

Dependent variable:

Price Per-Unit Avg. |Price− CE| RMSE Order Size # Trades Trade Size Seller MRS Buyer MRS Alloc. Eff.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
...
SR:SU:LA:OBR:NL −2.984 0.522∗∗∗ −3.079 −33.512 18.244∗∗∗ 6.007∗∗∗ 0.227∗∗∗ −0.094∗∗∗ 0.168∗∗∗ −0.003

(3.448) (0.069) (3.448) (30.349) (6.645) (0.426) (0.053) (0.031) (0.049) (0.014)

Constant 2.302∗∗∗ 1.674∗∗∗ 1.457∗∗ 1.996 14.964∗∗∗ 18.050∗∗∗ 3.508∗∗∗ 2.020∗∗∗ 3.081∗∗∗ 0.648∗∗∗
(0.608) (0.012) (0.608) (5.349) (1.175) (0.075) (0.009) (0.005) (0.009) (0.002)

Observations 95,473 95,473 95,473 95,473 96,000 96,000 95,473 95,469 95,473 96,000
Adjusted R2 0.017 0.978 0.014 0.002 0.020 0.986 0.834 0.467 0.601 0.608

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table D.3: Interaction regression results for fifth order interaction. This is a continuation of
the regression estimates in Table 2.
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provides most of this variation.

Tertiary interactions (Table D.4) show mostly decays in market success (e.g. price and

price deviation, both MRS measures, and allocative efficiency). Most, if not all, of the

improvements seen in Table D.2 are reversed when adding a third assumption to the market

(assuming the remaining two assumptions are relaxed). As most of the measures have one

or two seemingly negatively-associated assumptions, and each assumption is enforced in six

of the ten tertiary interactions, a systematic mild decay is not overly surprising. Quaternary

interactions are reported in Table D.4.
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Dependent variable:

Price Per-Unit Avg. |Price− CE| RMSE Order Size # Trades Trade Size Seller MRS Buyer MRS Alloc. Eff.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
...
SR:SU:LA −1.825 0.017 −1.878 −15.801 24.220∗∗∗ 9.580∗∗∗ −0.183∗∗∗ 0.006 0.029 −0.009

(1.719) (0.035) (1.719) (15.130) (3.323) (0.213) (0.026) (0.015) (0.024) (0.007)

SR:SU:OBR 0.031 0.243∗∗∗ 0.152 −0.028 −3.031 3.670∗∗∗ −0.228∗∗∗ −0.047∗∗∗ 0.106∗∗∗ −0.036∗∗∗
(1.719) (0.035) (1.719) (15.130) (3.323) (0.213) (0.026) (0.015) (0.024) (0.007)

SR:SU:NL 0.337 0.586∗∗∗ 0.389 0.440 −0.381 1.456∗∗∗ 0.068∗∗∗ −0.365∗∗∗ 0.794∗∗∗ −0.195∗∗∗
(1.729) (0.035) (1.729) (15.221) (3.323) (0.213) (0.026) (0.015) (0.025) (0.007)

SR:LA:OBR −3.659∗∗ −0.107∗∗∗ −3.592∗∗ −34.354∗∗ 18.825∗∗∗ 11.577∗∗∗ −0.196∗∗∗ −0.031∗∗ 0.039 −0.008
(1.719) (0.035) (1.719) (15.130) (3.323) (0.213) (0.026) (0.015) (0.024) (0.007)

SR:LA:NL −1.730 0.093∗∗∗ −1.790 −15.951 25.913∗∗∗ 20.619∗∗∗ 0.092∗∗∗ −0.360∗∗∗ 0.795∗∗∗ −0.232∗∗∗
(1.728) (0.035) (1.728) (15.212) (3.323) (0.213) (0.026) (0.015) (0.025) (0.007)

SR:OBR:NL −0.287 −0.099∗∗∗ −0.139 −0.527 −1.445 2.879∗∗∗ 0.207∗∗∗ −0.154∗∗∗ 0.237∗∗∗ −0.030∗∗∗
(1.737) (0.035) (1.737) (15.292) (3.323) (0.213) (0.027) (0.015) (0.025) (0.007)

SU:LA:OBR −5.373∗∗∗ 0.588∗∗∗ −5.518∗∗∗ −51.930∗∗∗ 10.445∗∗∗ 39.372∗∗∗ 0.365∗∗∗ −0.023 0.143∗∗∗ −0.066∗∗∗
(1.719) (0.035) (1.719) (15.130) (3.323) (0.213) (0.026) (0.015) (0.024) (0.007)

SU:LA:NL 11.532∗∗∗ 11.790∗∗∗ 10.452∗∗∗ 12.487 34.859∗∗∗ 50.120∗∗∗ 1.735∗∗∗ 0.209∗∗∗ −0.092∗∗∗ −0.199∗∗∗
(1.729) (0.035) (1.729) (15.218) (3.323) (0.213) (0.026) (0.015) (0.025) (0.007)

SU:OBR:NL 1.699 0.346∗∗∗ 1.647 4.376 −0.224 −0.586∗∗∗ 0.086∗∗∗ −0.030∗ 0.017 0.032∗∗∗
(1.739) (0.035) (1.739) (15.302) (3.323) (0.213) (0.027) (0.015) (0.025) (0.007)

LA:OBR:NL −6.067∗∗∗ −0.126∗∗∗ −5.876∗∗∗ −52.067∗∗∗ 10.434∗∗∗ 50.950∗∗∗ 0.241∗∗∗ −0.117∗∗∗ 0.247∗∗∗ −0.094∗∗∗
(1.737) (0.035) (1.737) (15.291) (3.323) (0.213) (0.027) (0.015) (0.025) (0.007)

SR:SU:LA:OBR 3.202 −0.350∗∗∗ 3.164 33.599 −18.825∗∗∗ −4.125∗∗∗ 0.196∗∗∗ 0.055∗∗ −0.110∗∗∗ 0.030∗∗∗
(2.431) (0.049) (2.431) (21.397) (4.699) (0.301) (0.037) (0.022) (0.034) (0.010)

SR:SU:LA:NL 1.046 −0.776∗∗∗ 1.198 15.187 −25.913∗∗∗ −11.079∗∗∗ −0.092∗∗ 0.349∗∗∗ −0.741∗∗∗ 0.182∗∗∗
(2.438) (0.049) (2.438) (21.461) (4.699) (0.301) (0.037) (0.022) (0.035) (0.010)

SR:SU:OBR:NL −0.165 −0.353∗∗∗ −0.312 −0.124 1.445 −2.519∗∗∗ −0.207∗∗∗ 0.164∗∗∗ −0.282∗∗∗ 0.037∗∗∗
(2.445) (0.049) (2.445) (21.523) (4.699) (0.301) (0.037) (0.022) (0.035) (0.010)

SR:LA:OBR:NL 3.540 0.034 3.601 34.337 −18.244∗∗∗ −13.518∗∗∗ −0.227∗∗∗ 0.075∗∗∗ −0.116∗∗∗ −0.007
(2.444) (0.049) (2.444) (21.512) (4.699) (0.301) (0.037) (0.022) (0.035) (0.010)

SU:LA:OBR:NL 5.487∗∗ −0.455∗∗∗ 5.409∗∗ 51.815∗∗ −10.434∗∗ −34.867∗∗∗ −0.241∗∗∗ 0.097∗∗∗ −0.265∗∗∗ 0.117∗∗∗
(2.445) (0.049) (2.445) (21.519) (4.699) (0.301) (0.037) (0.022) (0.035) (0.010)

...
Constant 2.302∗∗∗ 1.674∗∗∗ 1.457∗∗ 1.996 14.964∗∗∗ 18.050∗∗∗ 3.508∗∗∗ 2.020∗∗∗ 3.081∗∗∗ 0.648∗∗∗

(0.608) (0.012) (0.608) (5.349) (1.175) (0.075) (0.009) (0.005) (0.009) (0.002)

Observations 95,473 95,473 95,473 95,473 96,000 96,000 95,473 95,469 95,473 96,000
Adjusted R2 0.017 0.978 0.014 0.002 0.020 0.986 0.834 0.467 0.601 0.608

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table D.4: Interaction regression results for third order and fourth interactions. This is a
continuation of the regression estimates in Table 2.
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Appendix E Round-Average Price Densities

Figure E.1: Round-average price densities. Blue line is CE price and black line is subset
average. Outliers with round-average price > 25 omitted (top 0.8%).
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Appendix F Rule-type Pairings and Efficiency

Figure F.1: A heatmap of allocative efficiencies plotted over the SR:SU:OBR×NL:LA pair-
ings. The SR:SU:OBR axis marks denote the indicator values for each of the three market-
oriented rules. Similarly, NL:LA axis marks show the indicator values for the behaviorally-
oriented rules.

As alluded to in the primary analysis, the five rules defining this paper’s simulation

investigation can be partitioned into two categories: market-oriented rules and behaviorally-

oriented rules. Section 5.2 suggests evidence of heterogeneous impacts on key price and

efficiency measures between the two categories. Figure F.1 presents a heatmap of efficiencies

across the 32 treatments, with one axis reporting the enforced market rules and the other

axis showing the enforced behavioral rules. The figure serves as a re-imagination of the

estimates presented in the allocative efficiency column of Table 3.
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Clearly, column by column comparison reveals far more heterogeneous hues as compared

to a row based adjustment. A one step move on the NL:LA axis reveals large consequences

in equilibration, with within-row deviations over 0.3 in all but two rows (1:0:0 and 1:0:1).

Row to row adjustments are far more tame, though two pairs of row clusters are apparent.

It turns out these clusters are exactly partitioned by the inclusion of SU as an enforced rule.

Within row, SU=0 rows show muted hue adjustment across columns30, while SU=1 rows

show adjustments of close to 0.5 when moving from the 1:0 to 1:1 column.

30SU=0 rows which also satisfy SR=0 exhibit a large difference in the 1:0 column, but are
rather homogeneous in the other three columns.
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Appendix G Efficiency and Per-Unit Avg. Price Bivari-

ate

Figure G.1: Bivariate densities over average price and allocative efficiency. Densities are
separated based on inclusion or exclusion of each rule. The upper horizontal dotted line
shows the allocative efficiency of the 1:1:1:1:1 markets; the lower horizontal dotted line
shows the allocative efficiency of the 0:0:0:0:0 markets; the vertical dotted line shows the
competitive equilibrium price at endowment.
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Appendix H Robustness Runs

H.1 1k-entries per round

Rule Breakdowns

Outcomes None Enforced Only Market Only Behavioral All Enforced
Prices.

Average Price 2.15 (0.31) 15.29 (0.96) 2.13 (0.10) 2.09 (0.14)
Per-Unit Avg. 1.59 (0.21) 15.29 (0.96) 1.99 (0.12) 2.09 (0.14)
|Price− CE| 1.35 (0.21) 12.93 (0.95) 0.51 (0.07) 0.59 (0.08)

RMSE 1.78 (0.82) 15.15 (1.13) 0.64 (0.08) 0.77 (0.10)
Volume.

Order Size 15.08 (0.68) 1.00 (0.00) 5.69 (0.33) 1.00 (0.00)
# Trades 59.56 (8.47) 86.15 (7.08) 51.90 (6.46) 27.93 (2.29)
Trade Size 3.61 (0.48) 1.00 (0.00) 0.37 (0.05) 1.00 (0.00)

Efficiencies.
Allocative Eff. 0.67 (0.17) 0.66 (0.17) 0.95 (0.02) 0.99 (0.00)
Distance Eff. 0.21 (0.14) 0.28 (0.11) 0.77 (0.03) 0.86 (0.03)
Seller MRS 2.05 (0.47) 1.82 (0.26) 2.05 (0.07) 2.43 (0.08)
Buyer MRS 3.07 (0.70) 3.47 (0.69) 2.93 (0.09) 2.52 (0.07)

Table H.1: Outcome averages by treatment with 1000 entries per market round.

Rule Breakdowns

Outcomes Only NL Only OBR Only LA Only SU Only SR
Prices.

Average Price 2.41 (0.44) 3.27 (2.24) 1.65 (2.08) 15.08 (0.88) 1.94 (1.23)
Per-Unit Avg. 2.34 (0.40) 1.7 (0.26) 1.11 (0.07) 15.08 (0.88) 1.56 (0.16)
|Price− CE| 0.64 (0.26) 2.43 (2.20) 1.68 (2.08) 12.64 (0.88) 1.20 (1.23)

RMSE 0.75 (0.29) 6.08 (13.76) 5.88 (43.79) 14.09 (0.99) 2.15 (10.76)
Volume.

Order Size 15.19 (0.51) 14.87 (0.68) 42.50 (209.04) 1.00 (0.00) 8.78 (0.90)
# Trades 3.92 (1.17) 45.67 (6.12) 466.48 (16.79) 89.47 (8.39) 80.93 (8.88)
Trade Size 3.61 (0.48) 1.00 (0.00) 0.37 (0.05) 1.00 (0.00)

Efficiencies.
Allocative Eff. 0.65 (0.15) 0.71 (0.16) 0.69 (0.18) 0.65 (0.17) 0.67 (0.17)
Distance Eff. 0.48 (0.13) 0.21 (0.14) 0.01 (0.18) 0.27 (0.10) 0.27 (0.14)
Seller MRS 1.70 (0.30) 2.06 (0.45) 2.08 (0.53) 1.78 (0.24) 2.05 (0.44)
Buyer MRS 3.52 (0.55) 3.03 (0.58) 3.08 (0.71) 3.62 (0.65) 3.06 (0.58)

Table H.2: Outcome averages by treatment with 1000 entries per market round.

H.2 GSS Parameters
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Rule Breakdowns

Outcomes None Enforced Only Market Only Behavioral All Enforced
Prices.

Average Price 1.22 (0.36) 29.77 (3.49) 1.34 (0.17) 1.74 (0.29)
Per-Unit Avg. 0.90 (0.20) 29.77 (3.49) 0.99 (0.14) 1.74 (0.29)
|Price− CE| 0.83 (0.28) 28.33 (3.49) 0.56 (0.12) 1.16 (0.21)

RMSE 1.06 ( 0.85 ) 32.13 (3.99) 0.77 ( 0.31 ) 1.82 (0.48)
Volume.

Order Size 53.52 (3.75) 1.00 (0.00) 15.28 (1.80) 1.00 (0.00)
# Trades 18.38 (4.70) 25.65 (3.78) 38.21 (5.67) 44.54 (3.36)
Trade Size 12.70 (2.65) 1.00 (0.00) 2.63 (0.46) 1.00 (0.00)

Efficiencies.
Allocative Eff. 0.67 (0.14) 0.59 (0.14) 0.95 (0.02) 0.76 (0.04)
Distance Eff. 0.38 (0.11) 0.21 (0.06) 0.72 (0.06) 0.52 (0.04)
Seller MRS 0.70 (0.37) 0.51 (0.12) 1.13 (0.14) 0.55 (0.06)
Buyer MRS 4.53 (1.79) 7.43 (2.64) 2.65 (0.28) 4.97 (0.51)

Table H.3: Outcome averages by treatment with Gode et al. (2004) parameters.

H.3 Gjerstad (2013) Parametrizations

Rule Breakdowns

Outcomes None Enforced Only Market Only Behavioral All Enforced
Prices.

Average Price 136.68 (925.86) 1148.83 (142.17) 2.58 (1.09) 3.67 (3.45)
Per-Unit Avg. 87.00 (18.09) 1148.83 (142.17) 1.05 (0.28) 3.67 (3.45)
|Price− CE| 84.45 (925.35) 1058.99 (141.75) 88.49 (1.02) 88.49 (2.38)

RMSE 224.92 (3698.81) 1284.4 (159.53) 3.23 (7.76) 10.78 (19.12)
Volume.

Order Size 20.08 (1.42) 1.00 (0.00) 1.23 (0.18) 1.00 (0.00)
# Trades 19.44 (4.59) 23.53 (3.85) 72.74 (8.39) 54.45 (4.05)
Trade Size 5.06 (1.01) 1.00 (0.00) 0.91 (0.14) 1.00 (0.00)

Efficiencies.
Allocative Eff. 0.77 (0.10) 0.83 (0.09) 0.89 (0.02) 0.88 (0.02)
Distance Eff. 0.21 (0.16) -0.04 (0.14) -0.16 (0.04) 0.05 (0.07)
Seller MRS 383.82 (596.5) 149.05 (55.97) 2.12 (0.68) 3.23 (5.31)
Buyer MRS 131.5 (4058.98) 1243 (2850.98) 42.22 (43.07) 57.2 (8.76)

Table H.4: Outcome averages by treatment with Gjerstad (2013) preference functional form
and parametrization; the CE price is 91.
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Rule Breakdowns

Outcomes None Enforced Only Market Only Behavioral All Enforced
Prices.

Average Price 1.19 (0.42) 11.39 (1.40) 1.03 (1.95) 1.54 (0.37)
Per-Unit Avg. 0.87 (0.18) 11.39 (1.40) 0.68 (0.17) 1.54 (0.37)
|Price− CE| 0.67 (0.39) 10.50 (1.39) 0.52 (1.95) 0.90 (0.31)

RMSE 1.02 (1.49) 11.97 (1.60) 1.43 (11.67) 1.71 (0.76)
Volume.

Order Size 20.03 (1.41) 1.00 (0.00) 4.23 (0.57) 1.00 (0.00)
# Trades 19.46 (4.56) 23.44 (3.82) 38.50 (6.53) 29.02 (3.06)
Trade Size 5.05 (0.99) 1.00 (0.00) 1.16 (0.30) 1.00 (0.00)

Efficiencies.
Allocative Eff. 0.77 (0.09) 0.83(0.09) 0.99 (0.02) 1.00 (0.00)
Distance Eff. 0.21 (0.16) -0.04 (0.14) 0.72 (0.11) 0.65 (0.14)
Seller MRS 3.70 (5.25) 1.49 (0.54) 0.78 (0.18) 1.24 (0.20)
Buyer MRS 0.59 (1.66) 12.64 (38.4) 0.84 (0.36) 1.08 (0.19)

Table H.5: Outcome averages by treatment with Gjerstad (2013) parameters normalized to
reduce the numeraire supply and CE price by a factor of 100. Y endowments were reduced
to be 18 per buyer/seller pair and the CE price is 0.91 as opposed to 91.
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